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Abstract— Topology control is a crucial process for an efficient 
operation of a Wireless Sensor Network (WSN). The usage of 
WSNs in the Internet of Things (IoT) emerges new research 
challenges and novel applications. Recent WSNs proposals 
enhanced with Software Defined Networking (SDN) practices 
introduce new innovative network control strategies and protocols 
based on central control logic. This paper introduces two novel 
topology control techniques for Software Defined WSNs that can 
be combined and adapted to the context environment. In this 
direction, we propose CORAL-SDN, an SDN framework for 
WSNs that enables dynamic deployment and configuration of 
multivariate topology control mechanisms. We evaluate such 
topology control strategies using our own novel SDN 
experimentation facility for IoT. The results demonstrate 
significant improvements on WSNs management, control features 
and performance in terms of topology construction time and 
reduced topology maintenance overhead.  

Keywords— Topology control; Software Defined Wireless 
Sensor Networks 

I.  INTRODUCTION 
WSNs consisting of tens or hundreds of wireless sensor 

nodes, called motes, are mainly used to measure and monitor 
real world phenomena of interest, in high precision and large 
scale. They are used in a wide range of applications such as 
tracking, surveillance, disaster detection, environmental 
monitoring, healthcare and agriculture. Their main 
characteristics are the limited computational processing power 
and memory, low power operation and resources, limited 
bandwidth, and low quality radio communication [1]. 

WSNs today are becoming a key-enabling technology for the 
Internet of Things (IoT) [2], introducing a new range of WSN 
applications integrated to the traditional Internet infrastructure. 
The transition of WSNs to the new era of IoT, introduces new 
challenges and imposes the exploration of novel ideas in terms 
of new applications. Major relevant issues are interoperability, 
heterogeneity, quality of service, and security.  

An approach that targets the above challenges exploits new 
flexible network architectures, such as the Software-Defined 
Networking (SDN) which uses logically centralized software, 
hosted in nodes called SDN controllers, to control the behavior 
of a network by reducing the network configuration and 
management complexity. SDN was originally implemented for 
wired networks operating in cloud data centers. Recent research 
endeavors [3] are blending SDN and SDN-like architectures 
with WSNs technologies forming a new approach for SDNs 
called software-defined wireless sensor networks (SDWSNs). 

The SDWSN paradigm brings new ways in the WSNs control, 
management and operation. For the time being, the research 
community is mainly concentrating on SDN routing and data 
flow control. In this paper, we argue that a centralized SDN 
approach can improve WSNs aspects beyond routing and flow 
manipulation, for example the topology control.  

Topology Control is one of the most important and critical 
procedures used in the operation of WSNs [4]. The goal of 
topology control is the formulation of a graph representing an 
abstract view of the network nodes, and their communication 
links. This abstract representation is mainly used in routing 
decisions aiming for fewer bottlenecks, reduction of traffic, low 
latency and efficient energy consumption.  

 Although topology control has received a lot of attention in 
the WSNs community where a number of solutions have been 
implemented [5], the major changes towards IoT and network 
softwarization that WSNs are going through, compels to further 
investigation. An example is the efficient integration of Internet 
protocols under the SDN paradigm, in regard to low energy and 
lossy WSNs environment. Here, we study topology control 
solutions that can be applied in the new software defined 
manifestation of WSNs. In our understanding, this is the only 
paper that targets in depth the study of topology control in 
SDWSNs. 

Our investigation is conducted and evaluated using our own 
SDWSN framework, the CORAL-SDN, which enables dynamic 
deployment and configuration of multivariate topology control 
mechanisms. In our experiments, we used our SDN 
experimentation infrastructure which is a general facility for 
evaluating network control and protocol mechanisms for the IoT 
[6]. In this paper, we propose and evaluate experimentally two 
novel topology control techniques that can be combined and 
adjusted on-demand. Our main research goal is to improve 
WSNs management, control, and operation, through advanced 
topology construction algorithms that follow the SDN paradigm 
and achieve reduced time and control overhead.  

The paper is organized as follows: Section II provides 
background information for topology control on WSNs, SDNs 
and SDWSNs. In section III, we present our novel topology 
control strategies for SDWSNs. Our testing environment for 
experimenting with alternative topology control techniques, 
namely the CORAL-SDN, is described in section IV. Section V 
presents our experimental evaluation results and Section VI 
summarizes the main outcomes and outlines future research 
directions. 



II. RELATED WORK 
The topology control algorithms in traditional WSNs can be 

classified based on [4] as: (a) homogeneous algorithms that 
assume a simplistic approach where the nodes are using the 
same transmitting range; and (b) non-homogeneous algorithms 
where the network nodes are capable of different transmitting 
ranges. The latter approaches, depending on the information 
used in topology construction, can be subcategorized into the 
following distributed topology control protocols: (a) location 
based, like R&M and LMST [7], where node positions are 
known and can be used in a centralized manner; (b) direction 
based, like CBTC [8] and RHG [9], where nodes do not know 
their position, but they can estimate the relative direction of their 
neighbors; and (c) neighbor based, like KNeigh [10], and XTC 
[11], where nodes are aware only of the address IDs of their 
neighbors and some criteria like the link quality or distance.  

RPL [12], the dominant distance vector protocol for WSNs, 
specifies the construction of a Destination Oriented Directed 
Acyclic Graph (DODAG), using an objective function and a set 
of metrics/constrains. RPL builds a logical routing topology 
graph as an abstraction of the actual network. The network 
administrator(s) can decide to activate multiple versions of it by 
using different criteria for each graph, e.g., power consumption 
or link quality. 

Regarding the typical SDN proposals, topology discovery is 
a critical service provided at the controller layer. The de-facto 
OpenFlow Topology Discovery Protocol (OFDP) adapts the 
Link Layer Discovery Protocol (LLDP) with certain 
modifications, but performs topology discovery in fixed SDN 
environments mainly [13]. Recent research in OpenFlow 
topology control like [14], investigates OFDP and suggests new 
improved topology discovery approaches, that reduce 
significantly the amount of control messages for infrastructure 
SDNs. Moreover, the Open Networking Foundation Wireless 
and Mobile workgroup [15] currently determines architectural 
requirements and suggests extensions in the OpenFlow protocol 
for wireless and mobile domains, e.g., LTE and Wi-Fi. Here, we 
investigate SDN strategies for topology control that are not 
constrained by the OpenFlow protocol, but they can be 
integrated in its future evolution. 

In the research front of the SDWSN approaches, authors in 
[16] suggest a theoretical OpenFlow based protocol for WSNs, 
addressing key technical challenges for  Software-Defined WSN 
architectures. The application of SDN-inspired techniques in 
WSNs is described in [17], [18], while highlighting a number of 
flexibility and efficiency advantages but also challenges that 
should be addressed like the increase of control message 
overhead and energy efficiency. To overcome these challenges, 
recent proposals are using stateful routing tables and proactive 
routing decisions to reduce interactions with the controllers, and 
improve the flow-control decisions, such as the SDN-WISE 
[19]. In the above solutions, the topology control process is 
initiated by the controller in a procedure where the sink node 
advertises its existence to the neighbor nodes which, in turn, are 
initiating a flood of control messages to discover the rest of the 
nodes. In TinySDN [20] and Spotled [21], each node 
recognizing its neighboring nodes, transmits a set of topological 
information to the controller which constructs the topology. 

All the previously referenced SDWNSs proposals are using 
topology control techniques similar to the ones used in 

traditional WSNs, i.e., there is a main focus on the routing 
algorithms and their associated overhead. Furthermore, the SDN 
approaches are currently focusing on infrastructure networks 
and only recently in mobile networks. In this paper, we support 
the idea of a thorough investigation in topology control bespoke 
to software defined WSN proposals in order to exploit the 
advantages of SDNs, while tackling the challenges of the WSN 
environment, e.g., limited resources and low quality of wireless 
medium. Indicatively, an SDN controller can adapt the topology 
discovery process to the context environment. In the next 
section, we discuss our approach to topology control, along 
these lines.  

III. TOPOLOGY CONTROL IN SDWSNS 
Topology Control (TC) is divided into two core phases: 

Topology Construction and Topology Maintenance:  
The Topology Construction or Topology Discovery phase is 

usually initiated when the network starts its operation. Its main 
goal is to construct an abstract representation of the network 
topology and nodes’ connectivity. Depending on the TC 
protocol, the discovered information is stored either into each 
one of the network nodes, in case of a distributed protocol, or, 
into a central node, i.e., the sink, in case of a centralized 
approach. Although topology construction is unavoidably a time 
consuming process, there are occasions where its duration is 
crucial, e.g., an emergency disaster scenario. 

The Topology Maintenance phase is the recurring process 
that maintains the integrity of network connectivity during 
network operation. The main task is to update the abstract 
network connectivity structure. A high rate of topology 
maintenance execution requests, increases the amount of 
network control messages and subsequently increases the 
network’s Control Overhead (1). 

 Control Overhead = Control Packets / Total Packets (1) 

The network TC has a main objective: using low control 
overhead to provide the routing protocol algorithms with 
adequate information in order to achieve efficient message 
delivery, higher throughput, lower traffic, less bottlenecks and 
optimal use of energy. 

In this paper, we introduce two new TC algorithms for 
SDWSNs. Their task is to feed the global controller with 
sufficient information to enable it to create the topology graph. 
This graph composes a global representation of the WSN and is 
used from the global controller to make efficient decisions on 
the data flow establishments. The global controller is capable of 
using each algorithm separately or in combination in order to 
achieve the best possible outcome.  

We adapt a typical IoT network scenario consisting of a 
global controller operating on a desktop computer connected to 
the infrastructure network, and a set of static or mobile motes 
placed in various physical topologies.  

In the following two subsections we describe in detail the 
two TC algorithms. 

A. Topology control algorithm based on node advertisement  
 The first TC algorithm, based on node advertisement, is 
called TC-NA and described by the sequence diagram in Fig. 1. 
The controller initiates the topology discovery process by 
sending a topology discovery control packet to the first node. 



 
 As described in Algorithm 1, when a node receives a control 
message from the controller, the latter is transmitting a broadcast 
beacon message advertising its location to the neighboring 
nodes. This control message includes various information 
related to the sender like the node id. 

Algorithm 1 - TC based on node advertisement (TC-NA) 
1: for all received packets pkt do 
2:   if received pkt = advertisement broadcast from node then 
3:      prepare replay.pkt add nodeid, received.pkt.nodeId, 
                              link quality, signal strength, battery energy 
4:           send replay.pkt to the controller 
5:   end if 
6:   if received pkt =  advertisement pkt from controller then 
7:            send broadcast pkt to your neighbors 
8:   end if 
9: end for 

 The receiving node estimates data related to the signal 
strength, the link quality for the received message, and 
formulates a message with this information, adding also 
information related to its identification and its operational status, 
e.g., its battery power. This message is then transmitted back to 
the controller. When the controller receives a topology response 
message, it updates the network topology graph. Each node 
participates in the process, so consequently, the network floods 
from end to end. 

B. Topology control algorithm based on neighbor request  
 We carry on with the second topology control algorithm that 
is based on neighbor request. The algorithm is called TC-NR 
and it is described by the sequence diagram in Fig. 2. The 
controller initiates the topology discovery process by sending a 
control message to the first node attached. 

 As described in Algorithm 2, when a node receives a control 
message from the controller, it is broadcasting a beacon message 
to all neighbor nodes in range. Each node that receives that 
broadcast message, responds to the sender with a unicast packet 
providing information regarding the communication link quality 
and address id. The receiver collects the respond messages from 
the neighbor nodes and informs the controller. The controller 

 
subsequently updates the network topology graph. 

Algorithm 2 - TC based on neighbor node request (TC-NR) 
1: for all received packets pkt do 
2:   if received pkt = broadcast neighbor request then 
3:          prepare replay.pkt add nodeid, link quality  
                                                                  and signal strength 
4:          send unicast replay.pkt to the sender node 
5:   end if 
6:   if received pkt =  pkt from controller then 
7:          send broadcast pkt to your neighbors 
8:   end if 
9:   if node receives unicast pkt replay then 
10:          prepare replay.pkt add nodeid, received.pkt.nodeId, 
                              link quality, signal strength, battery energy 
11:        send replay.pkt to the controller 
12:    end if 
13: end for 

C. Comparison and discussion 
Prior to the quantitative evaluation in section V, we discuss 

the main architectural benefits and drawbacks of the above two 
algorithms. Initially, we have to acknowledge that both 
algorithms succeed to implement the topology discovery 
process. The TC-NA algorithm succeeds to collect the network 
information in a passive mode by reporting to the controller 
other nodes whenever these nodes advertise their existence. The 
TC-NR succeeds to collect the network information in an active 
mode, as each node requests an answer from its neighbors. 

Comparing the amount of tasks each algorithm executes in 
relation to packets sent, the TC-NR algorithm shows a higher 
number of executed tasks. Consequently, we argue that the TC-
NR algorithm produces inferior time performance results 
compared to the TC-NA, especially during the topology 
construction phase.   

Considering the topology maintenance phase, we can point 
out that the TC-NA algorithm has to be executed exhaustively 
for all nodes in order to collect all possible neighbors. On the 
contrary, the TC-NR can acquire the neighbors of a node by 
directly requesting the node itself. This difference can be 
valuable in certain cases: e.g., in a heterogeneous network with 
mobile and static nodes, the TC-NR can execute topology 
requests on specific nodes or parts of the network, as many times 
as needed, without overloading the rest of the network with 
unnecessary topology control packets. 

D. Proposed improvements  
Based on the above discussion, we can easily conclude that 

depending on the network scenario (e.g., the network topology 
or application), the two algorithms have such strong and weak 
points. We suggest that a WSN should support both the TC-NA 
and TC-NR algorithms, and dynamically apply and configure 
each one on the right occasion. Using the software defined 
control paradigm over a WSN, provides a solution to the 
problem of coexisting algorithms. SDWSN centralized 
intelligence can handle complicated decisions utilizing the 
global network view and applying different solutions depending 
on the network context.  

In the next section, we present our integrated SDWSN 
framework that is allowing us to experiment with alternative 
protocol strategies in various network scenarios. 

 
Fig. 1. The TC-NA algorithm  

 
Fig. 2. The TC-NR algorithm  



IV. THE CORAL-SDN ARCHITECTURE 
To experiment with the above algorithms, we implemented 

an innovative testing framework named CORAL-SDN. The 
CORAL-SDN enables elastic network operation through 
offloading complexity from the network protocols to the 
controller plane deployed at the surrounding fixed 
infrastructure. It supports deployment and dynamic 
configuration of alternative end-to-end topology control 
algorithms for IoT devices operating in heterogeneous 
environments, using centralized network control that exploits 
the global picture of the network. The facility is capable of 
taking into account fundamental characteristics of wireless 
networks, such as signal issues and intermittent connectivity. 
The CORAL-SDN establishes an ideal testing environment 
facilitating experimentation with software defined strategies and 
solutions for WSNs. 

The CORAL-SDN framework, as part of the second 
WiSHFUL (http://wishful-project.eu) Competitive Call for 
Experiments, has been integrated with the WiSHFUL platform 
(https://github.com/wishfulproject) [22] and is capable of 
conducting experiments using the IMEC w-iLab.2 test-bed or 
the Cooja emulator. CORAL-SDN architecturally is organized 
in two subsystems: the CORAL controller and the WiSHFUL 
project infrastructure. Fig. 3 depicts the CORAL architecture 
and the interfaces between the different components. 

 
 The CORAL Controller module, acting likewise an SDN 
controller, is responsible for the centralized management of the 
network flow control. The controller’s intelligence comes from 
the Decision Making subsystem that specifies a set of rules and 
thresholds, organized in algorithms (e.g. the TC-NA and TC-NR 
algorithms). These algorithms implement different network 
functions like topology control and routing. Based on modular 
architecture, it easily adapts new algorithms that facilitate new 
functionalities. Another essential module of the controller, the 
Network Modeler, maintains an abstract view of the network 
connectivity in a graph structure incorporating a variety of cross 
layer data, including the signal strength and the link quality 
estimation measurements collected from the network. 

 On the northbound, the CORAL controller is connected with 
the Dashboard (Fig. 4), which constitutes a highly flexible GUI 
visualization tool based on the NODE-RED platform 
(https://nodered.org). The interface visualizes the WSN 
topology and presents various measurements provided by the 
controller, while it also offers management functionalities and 
configuration parameters to the user, such as the type of the 
applied topology control algorithm. 

On the southbound, the controller communicates with the 
data plane through the WiSHFUL platform using the Universal 
Programming Interfaces (UPIs), i.e., novel lower protocol stack 
abstractions introduced from the WiSHFUL project. The control 
messages formed in JSON objects received from the WiSHFUL 
platform are propagated to the network nodes through a separate 
control channel. Using the WiSHFUL platform provides to the 
CORAL-SDN architecture heterogeneity on the data plane and 
robust experimentation facilities fully aligned with the software 
defined approach we are investigating.  

CORAL-SDN is the extension of our framework presented 
in [6] aiming the dynamic configuration of routing algorithms 
through an SDN-inspired facility for the IoT.  

 
V. EVALUATION 

The main goal of this section is to highlight our experimental 
results which compare the success rate and time needed for the 
controller to construct the network topology in different physical 
topology scenarios. Our evaluation focus on the topology 
discovery process rather than on the topology maintenance, 
because the topology control aspect is complex enough to 
deserve independent study. The latter constitutes part of our next 
research goals, integrating mobility issues as well. Thus, we 
firstly elaborate on our experimental setup, and then we present 
and discuss our results. 

A. Experimental Setup 
We implemented the SDWSN control plane of CORAL-

SDN and our topology control algorithms (i.e., imported as 
controller modules) in Java. In the data plane, we implemented 
a multi-hop forwarding network protocol for Contiki OS 
(www.contiki-os.org) using the C programming language.  

For our experimental evaluation, we used Cooja simulator 
with emulated Zolertia Z1 IoT devices. Cooja is a Linux based 

 
Fig. 3. CORAL-SDN Architecture 

 
Fig. 4. The CORAL-SDN Graphical User Interface (Dashboard) 
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cross-layer WSN simulator for Contiki OS, which enables the 
creation of virtual WSN scenarios. The radio environment was 
set to operate on channel 26 with channel check rate on 128 Hz. 
The control message packet size was 60 bytes.  

We conducted our experiments with WSNs consisting of 25 
nodes. We considered six distinct typical physical topology 
scenarios: Linear, Ring, Grid, Tree, Mesh dense, and Mesh 
sparse. Each scenario reflects different behavior regarding the 
network topology discovery. All experiments were conducted 
10 times and the results demonstrated correspond to the mean 
value. This number deemed appropriate for the statistical 
accuracy of our analysis, i.e., produced a low standard deviation 
of our measurements.  

The practical experience gained from the experimentation 
with our framework revealed a number of technical issues that 
have to be considered in SDWSN topology discovery strategies 
and are discussed in the paper. One of these issues was the 
detection of a certain amount of collisions, when the algorithms 
were initially flooding the network with topology control 
messages. To overcome this problem, we introduced a 
dynamically configured parameter in our algorithms specifying 
the time nodes have to wait before transmitting control 
messages. In order to evaluate the effect of this time interval, we 
conducted our experiments using two different ranges of 
randomly assigned values. The first one is in-between 1 to 3 sec, 
and the latter is in-between 1 to 6 sec.  

B. Experimental Results 
In Fig. 5, we present the topology construction duration in 

seconds, for each one of the experiments. We observe that linear 
topology produces the highest values as expected, since it 
investigates nodes one by one. On the contrary, the tree topology 
demands the minimum time. The results show clearly that the 
TD-NA algorithm is faster compared to the TD-NR. This 
outcome justifies our comments in section III-C. Regarding the 
time interval we conclude that an interval from 1 to 3 sec 
produces better results than the one from 1 to 6 sec. Some 
irregularities can be observed with the mesh high-density 
algorithm, as this topology is demanding in terms of the number 
of detected links, because of increased radio collisions. 

  
In Fig. 6 to Fig. 9, we investigate the quality of the produced 

result compared to the algorithm’s success rate. Fig. 6 shows that 
the node discovery, in general, is successful since the success 
rate is above 90% in all cases.  

 
Fig. 7 depicts in detail the number of discovered nodes in 

each case. The tree topology and in some cases the ring topology 
scenario experienced some minor difficulties in recognizing the 
network. This is mainly due to the big amount of control 
messages exchanged in short interval. 

 
In Fig. 8, the percentage of the successfully recognized 

connectivity links between the nodes is presented. From this 
chart we can conclude that link detection is even more 
challenging, leaving space for improvement for both algorithms. 
Although in most of the scenarios the unsuccessful link 
discovery ratio was less than 10%. 

 
Fig. 9 shows the number of the experimental runs where 

successful detection for all network links is occurred. In some 
topologies, like the grid and the mesh dense, we observed the 
most challenging results, leaving space for improvement and 
further investigation. We note that well-established WSN 
algorithms (e.g., RPL) face similar issues as well. Our choice of 
topologies stress-test the topology discovery.  

  
Fig. 5. Topology discovery duration for 25 nodes 
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Fig. 6. Node discovery rate for 25 nodes 
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Fig. 7. Node discovery successful attempts for 25 nodes 
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Fig. 8. Link discovery rate for 25 nodes 
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Based on the evaluation outcome discussed above, the 

proposed SDWSN topology control algorithms exhibited a 
successful operation regarding the node discovery process and 
performance, i.e., rates above 90% in the majority of the 
topology cases. Moreover, the communication links discovery 
was almost 100% successful in most cases. Only in two cases 
the TD-NR was no able to detect all the communication links 
due to the amount of control messages produced during the 
discovery process. The aforementioned results highlight the 
main outcome of this paper: switching between the proposed 
topology control strategies based on information handled by the 
software defined controller, i.e., the detected network 
conditions, topology and application requirements, can improve 
SDWSNs performance. 

VI. CONCLUSIONS  
In this paper, we addressed issues related to topology control 

for SDWSNs. Topology control is a key factor in WSNs 
responsible for the seamless, smooth and efficient operation of 
the network. Our experimental results show that software 
defined techniques can improve the topology control in WSNs, 
while providing robust results. The proposed algorithms are 
reducing the initial latency caused by the need of 
communication with a controller, and subsequently improve the 
time to establish data flows in the network, compensating even 
the increased control traffic introduced by the SDN paradigm to 
WSNs. As a future work, we are planning to include mobility 
and heterogeneous environment scenarios, investigating in 
depth topology maintenance issues as well. We also plan to 
conduct experiments increasing the number of nodes in the 
network in real testbeds, i.e., using both the WiSHFUL [22] and 
MONROE [23], [24] novel experimentation platforms. Last but 
not least, an important step forward is to introduce relevant 
topology control strategies for the evolution of OpenFlow 
beyond infrastructure networks.  
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Fig. 9. Link discovery successful attempts for 25 nodes 
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