
Elastic Content Distribution Based on Unikernels
and Change-Point Analysis

Polychronis Valsamas, Sotiris Skaperas and Lefteris Mamatas
Department of Applied Informatics,

University of Macedonia,
156 Egnatia Str, 54636, Thessaloniki, Greece,
{xvalsama, sotskap, emamatas}@uom.edu.gr

Abstract—The emerging 5G networks call for new approaches
to CDNs through addressing challenging issues, such as: (i)
scalable and holistic resource management, spanning from large
data centers to the user device, including edge clouds; (ii)
incorporation of heterogeneous physical and virtual resources;
(iii) extensibility to support new capabilities or mechanisms; and
(iv) adaptability to dynamic user requirements, server resources
and network capacity constraints. User-generated content is the
driving force for new services, while edge cloud solutions are
being proposed to host (or cache) content locally. However, it is
costly to deploy traditional clouds near end-users and such virtual
machines (VMs) are inefficient for dynamic network conditions
(i.e., may boot-up in minutes).

Here, we propose an elastic content distribution platform that
serves the Internet content using tiny Unikernel-based VMs. Such
VMs are hosting one or a few videos each, appear rapidly in
nearby cloud deployments, serve users and then disappear. In
other words, the studied environment provides content dissem-
ination through very dynamic, almost ”fluid” VM placement,
since the content is packaged with the server software with just
a minor increase in size. So, we reposition the content caching and
provisioning as a VM orchestration problem. We demonstrate the
complete implementation of the proposed platform with proof-
of-concept experimental results.

Index Terms—Content Delivery Networks (CDNs), Lightweight
Clouds, Unikernels, Change Point Detection Analysis

I. INTRODUCTION

The exponential growth of Internet content, in size, quantity,
and network traffic demands, enabled network architectures
realizing efficient hosting, discovery and dissemination of
content, such as the Content Delivery Networks (CDNs) [1]
[2]. CDNs are usually tightly coupled with cloud providers
(e.g., Akamai [3], Mirror Image [4], Microsoft Azure [5],
Amazon [6]) that use their own hardware, sometimes cus-
tomized (e.g., NetApps FlexCase [7]). The CDN software may
be proprietary, costly for SMEs and with specific hardware or
OS requirements. Such approaches deliver transparently and
efficiently content to the end-users. However, traditional CDN
servers are typically far away from the content consumers and
are unsuitable for the ultra delay-sensitive applications envis-
aged by the 5G networking initiatives [8]. Hence, we argue
that there is a need for open, flexible, extensible, hardware-
independent and resource-efficient CDN solutions hosting the
content near to the users, and we suggest lightweight virtual-
ization as an enabling technology for such unique features.

The main candidates for lightweight virtualization are the
Containers and the Unikernels. The Containers (e.g., Docker
[9] or LXC [10]) are standardized units implementing appli-
cation packaging with all of its dependencies. Unikernels [11]
(e.g., Mirage0S [12], Click OS [13], Rump Kernel [14], OSv
[15]) are single-purpose VMs with only the essential part of
the OS for the particular service, specialized at compile-time
and sealed against modification when deployed in the cloud.
The Unikernels have fewer MBs in size, boot up quicker and
are more secure than Containers (e.g., the latter use shared
kernel space). A Unikernel-based web server can even boot
transparently in milliseconds with the reception of a DNS
request packet [16]. A relevant thorough comparison between
Unikernels and Containers can be found in [17]. For the above
reasons, we suggest hosting Internet content using Unikernels.
We named the latter Micro Content-Proxies (MCPs).

Along these lines, we propose a novel CDN platform,
called Unikernel-Based CDN (UNIC), which provides efficient
content caching through placing MCPs with popular content
near the users. In comparison to traditional CDN solutions,
UNIC provides the following advantages: (i) it can operate
over heterogeneous hardware devices with diverse capabilities,
including lightweight edge clouds; (ii) it provides significant
elasticity capabilities through tiny VMs orchestration; (iii)
it supports modular extensibility with new mechanisms; and
(iv) it defines new research problems emerging from bringing
together the content-caching approaches (e.g., [18], [19]) with
the VM orchestration proposals.

Furthermore, UNIC supports the following novel features:

• modular orchestration of Unikernel-based VMs hosting
replicas of Internet content (i.e., the MCPs), such as for
configurable VM placement;

• content popularity changes detection mechanisms that
drive the MCPs deployment based on a novel Change-
Point Detection (CPD) methodology tailored to the spe-
cific problem;

• dynamic load balancing using a bespoke DNS service
attached to the VM orchestration; and

• real-time monitoring of server resource utilization and
end-user performance.

We designed and implemented UNIC in the context of the
MONROE research project [20], [21]. MONROE provides

novel large-scale experimentation facilities and measurements
of real buses, trains and tracks communicating over multi-
ple mobile broadband providers. In this paper, we introduce
UNIC and focus on its two core features: (i) the modular
VM orchestration (e.g., placement); and (ii) the detection of
content popularity changes. We tested our CPD methodology
and experimented with UNIC using real youtube popularity
measurements [22] to drive end-user content demand, as an
approach to early detect changes in traffic and server resource
utilization.

The UNIC platform applies CPD mechanisms [23] - [27]
to provide an early signal of content popularity changes
and deploy new MCPs. CPD is used extensively in network
anomaly detection [28], [29], e.g., for intrusions detection [30]
- [33]. We proposed a theoretical CPD methodology suitable
for content popularity change estimation, aligned to the studied
context. In our understanding, it is the only one applying CPD
for content popularity in CDNs, and achieves promising results
[34].

The efficient VM placement is a challenging issue in
cloud computing. However, existing relevant proposals do not
consider the high-dynamicity of Unikernels. For example, the
survey paper [35] studies and categorizes a large number
of existing VM placement approaches, but none considering
Unikernels. UNIC is an ideal platform to experiment with such
problems, since it supports modular VM orchestration, e.g.,
the definition of VM placement algorithms using short code
snippets through a novel Graphical User Interface (GUI).

In our understanding, the only relevant CDN platforms to
UNIC are [36], [37]. The MOSTO platform [36] deploys
Unikernels as TCP proxies (i.e., to improve TCP’s slow-
start algorithm performance). An interesting CDN solution
with impressive performance is [37], which provides content
through Click OS Unikernels [13] and is evaluated with a
CDN simulator [38]. In contrast to [37], which focuses on
performance aspects, UNIC: (i) considers heterogeneity in
terms of virtualization and Unikernel technology; (ii) conducts
real experimentation; and (iii) achieves flexibility through
Unikernel-oriented VM placement driven by novel early con-
tent popularity change detection. However, the two approaches
could be potentially synchronized (i.e., support Click OS in
our solution).

Last but not least, we provide our first proof-of-concept
results, demonstrating the full system operation. We are cur-
rently extending our platform towards conducting experiments
with the MONROE test-bed’s mobile nodes and utilizing
multi-homing capabilities of end-users.

The rest of this paper is organized as follows. Section II
details the UNIC platform’s architecture and highlights its
core mechanisms. Section III presents our experimentation
methodology and proof-of-concept results, demonstrating the
full UNIC system operation. Finally, section V concludes the
paper and highlights our future work.

Fig. 1. The Architecture of the UNIC Platform

II. THE UNIC PLATFORM ARCHITECTURE

UNIC is an intelligent lightweight cloud orchestration plat-
form providing efficient content distribution to the end-users
through MCPs scattered to a cloud hierarchy (i.e., with both
regular and lightweight clouds). The UNIC platform realizes
flexible and scalable content distribution over heterogeneous
virtual and physical resources. We focus on two main UNIC
aspects here: (i) the modular VM placement algorithms con-
sidering real-time server resource utilization and content pro-
visioning requirements; and (ii) a novel approach to early
content popularity change detection driving VM orchestra-
tion based on our CPD methodology, i.e., Cumulative Sum
(CUSUM) procedures efficiently combining off-line and on-
line CPD, mechanisms revealing the direction of changes
and an improved time-series segmentation algorithm to detect
multiple changes.

Here, we give a bottom-up description of the UNIC platform
architecture (i.e., Figure 1), which consists of the following
three main layers:
a) The Physical Layer utilizes federated hardware provid-
ing the required heterogeneity and scalability aspects. More
precisely, we use both the MONROE and our own SWN
test-beds(i.e., http://emulab.swn.uom.gr). The SWN test-bed
provides the regular and lightweight cloud facilities and the
MONROE test-bed hosts the end-users with challenging re-
quirements (e.g., mobility, communication signal issues). The
integration of the two test-beds enables the scalability aspect.
b) The Virtualization Layer supports lightweight cloud ca-
pabilities and multiple Unikernel technologies (e.g., Mirage
OS, Rump Kernel or Click OS). The UNIC architecture is
independent from the virtualization technologies used; hence,
carefully designed abstractions hide the virtualization hetero-
geneity (i.e., the Resource Abstraction Sublayer exports a
uniform interface for VM control).
c) The Management and Orchestration Layer controls and
orchestrates the UNIC platform and test-beds, including pro-
viding the efficient VM placement through the Placement En-
gine, the traffic control through the Data Flow Controller and

network analytics enabling intelligent network configuration
decisions through the Data Analyzer and the Decision Engine,
respectively.

As shown in Figure 1, the UNIC dashboard provides
the experimentation input, results visualization and modular
extensibility of the evaluated mechanisms through the Node-
RED tool [40].

An important UNIC aspect is the ability to implement
VM orchestration processes in the form of Node-RED work-
flows, in a plug-and-play fashion. All the UNIC Management
and Orchestration Layer components have been implemented
in the form of Node-RED nodes, such as: (i) the content
popularity detection for the Decision Engine; (ii) the VM
placement functions for the Placement Engine; (iii) the content
popularity and web client performance monitoring for the
Network Analytics; and (iv) the traffic load balancing (i.e.,
our own dynamic DNS server matching content replicas with
web clients) for the Data Flow Controller. These nodes are
standalone components that can be manipulated / configured
independently of each other and be connected to form com-
plete VM orchestration processes.

To further analyze the UNIC platform, we describe two of
its core features below, i.e., the content popularity changes
detection and the modular VM placement mechanisms. In
section III, we show our first experimental results regarding
these two aspects, utilizing and demonstrating the full platform
operation.

A. Content Popularity Changes Detection

The UNIC platform detects early changes in the content
popularity and signals new MCP placements, in case of an
upward qualitative change in the content popularity or a
removal of MCPs in case of a downward change (i.e., handled
from the VM placement algorithms of subsection II-B). Such
decisions are being communicated to a dynamic DNS server
assigning end-users to the active content caches, in a round-
robin fashion.

We propose a novel statistical change point analysis method-
ology to approach the content popularity detection problem.
Our mechanisms target the following requirements: (i) low-
complexity and quick estimations to match the dynamic and
resource-constraint nature of Unikernels; (ii) to rely on a non-
parametric framework to avoid restrictive assumptions (i.e.,
no particular model or distribution can fit a ’mixed content’
provisioning and a large number of model parameters may
lead to high convergence times); and (iii) to operate in an on-
line manner and be able to estimate the existence, the direction
and magnitude of changes.

To address the above requirements, we detect the existence
of a change in the historical sequence of content views’
observations using a retrospective test statistic for the unknown
time of change in the mean [40]. Such procedure consists
of a CUSUM based detector and the Newey-West long-
run variance estimator [41] to capture the serial dependence
between observations. We combine the method [40] with
a new heuristic incorporating the two binary segmentation

algorithms [42], [43], to be able to detect multiple change
points (i.e., through a segmentation of the time-series). We
apply the Moving Average Convergence/Divergence (MACD)
trend indicator [44] to estimate the direction of detected
changes. More information on our CPD approach can be found
at our presentation [34].

Regarding our on-line CPD mechanism, we implemented
a stopping-time procedure [27], based on a mean CUSUM
detector. The stopping rule depends on a sensitivity parameter
� 2 [0, 1

2). For example, a � ⌧ 0.25 allows slower but more
accurate detections, in terms of type I errors (i.e., incorrect
rejection of the null hypothesis of no change) and � � 0.25
leads to quicker but more sensitive to false alarms detections.

We outline our main content change-point detection
algorithm, assuming that the monitoring period starts at the
arbitrary time t = m.s, as follows:

• Step 0: Define a priori a finite monitoring window l > 0,
and denote the monitoring horizon as m.h = m.s+ l.

• Step 1: Apply the segmentation algorithm supplied by
the retrospective statistic Rh for the whole historical
period h = [1,m.s], or for the bounded interval (i.e.,
to experiment with smaller monitoring periods):
h = [w,m.s], w > 0,

– if no changes are detected, the training sample of the
sequential procedure becomes m = h,

– else the training sample becomes m = [cplast,m.s],
where cplast is the detected time of change.

• Step 2: Apply the sequential procedure S(m, k), k �
m.s,

– if a change is detected for some m.s kcp m.h,
the procedure stops,

– else if no change is occurred after m.h observations
set kcp = 0 and the monitoring terminates, i.e.,
proceed to Step 4.

• Step 3: If kcp 6= 0, define kcp as a change-point and
apply the trend indicator at the time of change TI(kcp),

– if TI(kcp) > 0 then deploy a Unikernel (i.e., upward
change),

– else, displace a Unikernel (i.e., downward change).

• Step 4: Set a new starting point for the monitoring period,

– if kcp > 0, set m.s = kcp + d, where d is a constant
value defining a period assuming no change,

– else, set m.s = m.h.

We maintain two parallel change-point detection processes
with different significance level ↵ and parameter � values.
We place one more Unikernel, in case the change is detected
from both processes, otherwise we may remove one or two,
in a similar way. The MCP placements and removals are
being handled from the algorithms described in the following
subsection.

B. Modular VM Placement

As discussed above, UNIC supports modular extensibility
of VM orchestration functionalities in the form of indepen-
dent software entities, called Node-RED nodes. We exploited
such capability to implement three alternative VM placement
mechanisms: (i) a Random Placement algorithm, choosing
randomly one of the available physical nodes and providing
reference measurements; (ii) a Quantity-Based, choosing the
physical node each time hosting the lower number of VMs;
and (iii) an Objective Weight Function (OWF) approach,
considering the real-time CPU, RAM and network utilization
measurements of each node, weighted by particular coeffi-
cients (i.e., tuning the involved performance trade-offs).

Since the first two algorithms are self-explanatory, we
detail the OWF algorithm only. We consider as PN =
{PN1, ..., PNn} the set of available physical nodes (PN) to
host MCPs, where n is the PN number.

We define below the constraints for each PNi, 1 i n,

0% CPUPNi ,MEMPNi , TTPNi , RTPNi < 100%

The variables CPU , MEM , TT and RT represent the per-
centage of CPU utilization (i.e., the average values of available
CPU cores), memory allocation, outgoing and incoming link
utilization, respectively.

The subset APN = {APN1, ..., APNm} ✓ PN , m n,
denotes the PNs that satisfy the above constraints (i.e., they
have available resources to host one more VM).

The OWF calculates periodically the following objec-
tive function, representing the resource utilization for each
APNj , 1 j m:

Node.UtilizationAPNj =

= ↵CPUAPNj + �MEMAPNj + �TTAPNj + �RTAPNj

The coefficients ↵, �, �, � � 0 weight the importance of
each resource type, e.g., to match particular application-level
requirements.

We place the VM on the one APNj out of the APNs that
provides the minimum resource utilization, given by:

min
APNj

Node.UtilizationAPNj , 8j 2 [1,m]

In section III, we experiment with the above three algo-
rithms. The capability of UNIC to specify alternative place-
ment algorithms allows it to act as a novel experimentation
facility for more sophisticated algorithms. For example, we
are currently working on alternative proposals considering the
high-dynamicity of Unikernels.

III. PROOF-OF-CONCEPT EXPERIMENTAL RESULTS

Here, we describe our experimentation methodology, includ-
ing the details and configurations of main platform implemen-
tation aspects, the test-bed used and the two experimentation
scenarios we carried out. The section concludes with our
proof-of-concept results demonstrating the full system oper-
ation and its capabilities for content popularity detection and
dynamic VM placement.

A. Experimentation Methodology

We conducted real experiments that required the imple-
mentation and configuration of separate technical features,
such as: (i) the VM orchestration; (ii) the content popularity
detection mechanisms; (iii) the end-user traffic emulation and
control; and (iv) the physical server resource utilization and
end-user performance monitoring. We briefly outline each
technical aspect below, i.e., configuration parameters, basic
implementation details or open-source tools we used.

The VM Orchestration: We created lightweight web-
servers delivering content with Mirage OS Unikernels. Such
tiny VMs are being orchestrated according to a work-flow
diagram created through the Node-RED tool. Such work-flow
defines the communication of independent software entities,
i.e., the Node-RED nodes. We created one node per VM
orchestration process (e.g., the VM deployment, the place-
ment decision making, etc). An experimenter can introduce
new nodes (e.g., placement algorithms) or connect them in
alternative ways (e.g., to create new orchestration work-flows).
All processes communicate with the hypervisor through the
Resource Abstraction Sublayer (RAS), exposing a unified
north interface to the orchestration features but virtualization-
technology specific south interfaces. The latter communicate
through ansible scripts [45]. RAS allows us to introduce
heterogeneous virtualization technologies, in the near future.

The Content Popularity Detection Mechanism: We im-
plemented the CPD mechanisms in Matlab. To ensure an
online operation, we created at a separate host a Matlab TCP
server application that receives periodic content popularity
measurements and returns a notification for each detected
change-point and an estimation of its basic characteristics (i.e.,
direction and rough magnitude). The other end is a Node-RED
node that triggers VM deployments or removals.

The end-user traffic emulation and control: We emulated
the web-clients using the httperf open-source tool [46]. We
create and deploy web-clients based on real content popularity
measurements extracted from youtube with the tool [22]. In
Figure 2, we show the content requests per minute we used
as an input for the emulation of web clients in these experi-
ments. The duration of the particular measurements match the
duration of the experiments, i.e., 310 minutes for each run.
We created a DNS-based load-balancing Node-RED node that
keeps track and redirects the web requests to particular content
caches (i.e., Unikernel VMs), in a round-robin fashion.

The physical server resource utilization and end-user
performance monitoring: We are monitoring the servers’
resource utilization, in terms of CPU, memory, incoming /
outgoing traffic and the performance of web-clients using the
open-source tool CollectD [47]. We store the measurements
in InfluxDB [48], a time-series database, and visualize them
with the Grafana tool [49]. The measurements reach to the
orchestration processes that take informed decisions for the
context environment, e.g., to the VM placement algorithms.
The monitoring takes place at regular time intervals (i.e., every
10 secs).

Fig. 2. Content-views per minute of a particular youtube video and detected
change-points for different ↵ and � values. Red and green lines symbolize
the upward and downward change respectively.

We grouped our experimental runs into two scenarios. The
first scenario investigates the impact of early content popu-
larity change detection driving by VM orchestration, while
the second investigates the impact of placement algorithms
utilizing real-time server resource utilization measurements.

We use our own SWN test-bed to conduct the experiments.
More precisely we used: (i) seven physical servers, five to
host the MCPs, one as a Management and Orchestration server
and one to host the CPD mechanisms; (ii) ten Raspberry PIs
to emulate the web-clients requesting web content from the
MCPs; and (iii) one L3 100Mbps switch.

We detail the results of our two experimental scenarios
below.

B. Experimental Results

We carry out two experimental scenarios, the first validating
the impact of our change-point detection mechanisms and the
second of the placement algorithm used. We evaluated both
of them in terms of physical servers’ resource utilization. For
both scenarios: (i) we assume a running operation of UNIC
with three MCPs hosting particular web content; and (ii) we
allocated web-clients based on the real content popularity
traces illustrated in Figure 2. We see there is a small change
(i.e., reduction) in the end-user demand to watch the particular
video at around the 150 minute of the experiment and a
significant change after the 220 minute.

We apply two CPD processes in parallel with variable
sensitivity, i.e., a more sensitive with parameters � = 0.25,
↵ = 0.95 and a less sensitive with parameters � = 0,
↵ = 0.99, as shown in Figure 2. In case both of them estimate
a change point at the same time interval, we deploy two VMs,
assuming a larger magnitude of change. In the typical case the
sensitive approach detects a change but not the less sensitive
one, we deploy one VM.

We set the OWF algorithm’s coefficients ↵, �, �, � � 0 to
the values 60%, 30%, 5%, 5%, respectively. In the following
figures (i.e., 3 to 8), the different colors represent measure-
ments from different physical machines.

Fig. 3. The servers’ CPU utilization with the change-point detection mecha-
nisms disabled, using the Objective Weight Function placement algorithm

Fig. 4. The servers’ memory allocation with the change-point detection mech-
anisms disabled, using the Objective Weight Function placement algorithm

Scenario 1 - Impact of the change-point detection mech-
anisms: To evaluate the impact of the change-point detection
mechanisms, we run the experiment twice, one with the CPD
mechanisms enabled and one with them disabled.

The Figures 3 and 5 contrast the percentage of CPU
utilization and Figures 4 and 6 the percentage of memory
allocation per physical server, with the change-point detection
mechanisms disabled and enabled, respectively. According
these figures, we have the following observations:

• for the first time period (i.e., 0 to 220 minutes), the CPU
and memory allocation is similar for both cases.

• for the second time period (i.e., 220 to 310 minutes),
the maximum CPU utilization was reduced around 10%,
while there is a 0.5% increase in the memory allocation.

Such outcome can be explained as follows. In the second
experimental run, the change-point detection mechanisms take
the decision to boot two more MCPs due to the abrupt
increase of content views (i.e., both CPD processes detect the
change, as shown in Figure 2). This decision reduces the CPU
utilization, but has a minor impact on the memory allocation
(i.e., due to the additional VM deployment). This is consistent
with the content popularity traces used for the web-clients
deployment, dictated by the real measurements, where there
is a change-point at the same time-period (i.e., see Figure 2).
We note the smaller change-point, detected from the sensitive
CPD process only, leads to the removal of an MCP, without
significant impact on both CPU utilization and Memory.

Scenario 2 - Impact of the VM placement algorithm: Due
to space constrains we illustrate two placement algorithms,
the first using the Random and the second the OWF. The
latter mechanism considers the real-time measurements of all

Fig. 5. The servers’ CPU utilization with the change-point detection mecha-
nisms enabled, using the Objective Weight Function placement algorithm

Fig. 6. The servers’ memory allocation with the change-point detection mech-
anisms enabled, using the Objective Weight Function placement algorithm

available physical machines. In both cases the change point
detection mechanisms are enabled.

Figures 5 and 7 highlight the impact of the placement
algorithm on the CPU utilization, while Figures 6 and 8 the
same impact on the memory allocation of physical servers.
According to these four figures, we observe the following:

• for the first time period (i.e., 0 to 220 minutes), the CPU
and memory measurements scale at the same low-levels,
for both placement algorithms (i.e., there are not very
many content requests, as shown in Figure 2).

• for the second time period (i.e., 220 to 310 minutes),
the OWF placement algorithm causes the consumption of
at least 10% less maximum CPU allocation, which even
reaches the 30% at some points. This without significant
changes in the memory allocation.

The above outcome can be justified by the choice of the
Random placement algorithm to boot one additional MCP in
a server that hosts other VMs as well. This result calls for
further investigations in the sophistication of the placement
algorithms.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced and detailed UNIC, our elastic
Content Distribution facility based on Unikernel VMs, moti-
vated by the unique requirements of 5G networks evolution
(e.g., ultra low-delays, flexibility, programmability and het-
erogeneity). We particularly focused on two of its primary
aspects: (i) its modular VM orchestration capability; and (ii)
its novel mechanisms for content popularity detection. We
provided proof-of-concept results demonstrating the above two
aspects and its full system operation.

Fig. 7. The servers’ CPU utilization with the change-point detection mecha-
nisms enabled, using the Random placement algorithm

Fig. 8. The servers’ memory allocation with the change-point detection
mechanisms enabled, using the Random placement algorithm

Our future work includes improvements in the main UNIC
features and experimentation with new novel mechanisms,
such as:

• support of real mobile clients. We are currently experi-
menting with web-clients in real buses and multi-homing
capabilities over multiple mobile broadband providers, in
the context of the MONROE project.

• alignment to the Mobile Edge Computing paradigm,
e.g., through MCPs that appear dynamically at edge
clouds near the mobile users.

• network slicing support. We consider, in the context
of the NECOS project, a network slicing scenario with
alternative content delivery services being offered (e.g.,
HTTP, video content and augmented reality services),
assuming a different slice per type of service.

• improvements in the VM placement algorithms. We
are currently working on more sophisticated placement
algorithms considering the very-dynamic behavior of
MCPs.

• extensions in our change-point detection mechanisms,
e.g., their integration with stochastic models to support
prediction of content popularity and more sophisticated
ways to detect the magnitude of changes.

• to synchronize with other content provisioning
paradigms, e.g., Information-Centric and Content-
Centric Networking [50] research areas, content offload-
ing to Mobile Edge Clouds solutions, etc.

• to investigate complementary research problems.
UNIC can also validate intelligent algorithms for other
research topics, e.g., network conditions forecasting, de-
tection of anomalies or security issues, etc.

ACKNOWLEDGMENTS

This work is partially supported by the open call scheme
of the H2020 MONROE (grant agreement number 644399)
project and the H2020 NECOS (grant agreement number
777067) project. The views expressed are solely those of the
author(s).

REFERENCES

[1] Pathan, Mukaddim, Rajkumar Buyya, and Athena Vakali. ”Content
delivery networks: State of the art, insights, and imperatives,” Content
Delivery Networks, Springer, pp. 3-32, 2008.

[2] Pathan, Al-Mukaddim Khan, and Rajkumar Buyya. ”A taxonomy and
survey of content delivery networks,” Technical Report Grid Computing
and Distributed Systems Laboratory (GRIDS-TR-2007-4), University of
Melbourne, 2007.

[3] Akamai Technologies, Inc., www.akamai.com, 2007.
[4] Mirror Image Internet, Inc., www.mirror-image.com, 2007.
[5] Azure Microsoft Interntet, Inc., https://docs.microsoft.com/el-gr/azure/.
[6] Amazon.com, Inc., https://www.aws.amazon.com/.
[7] NetApp. NetApp FlexCache. http://www.netapp.

com/us/products/storage-systems/flashcache/index.aspx, 2013.
[8] N.Alliance ”5G white paper.” Next generation mobile networks, white

paper (2015).
[9] ”Docker,” Docker, 2016. [Online]. Available: https://www.docker.com/.

[Accessed: 06-Apr-2016].
[10] ”Linux Containers”, LXC [Online]. Available:

https://www.linuxcontainers.org/.
[11] A. Madhavapeddy and D. J. Scott, ”Unikernels: Rise of the virtual library

operating system,” Queue, vol. 11, no. 11, 2013.
[12] Xen project, ”MirageOS,” 2016. [Online]. Available: https://mirage.io/.

[Accessed: 30-Nov-2016].
[13] NEC, ”ClickOS,” A minimalistic, tailor-made, virtualized operat-

ing system to run Click-based middleboxes [Online]. Available:
http://cnp.neclab.eu/clickos/. [Accessed: 03-Apr-2016].

[14] J. Cormack, ”The rump kernel: A tool for driver development and a
toolkit for applications.”

[15] Cloudius systems, ”OSv - the operating system designed for the cloud,”
2016. [Online]. Available: http://osv.io/. [Accessed: 30-Nov-2016].

[16] A. Madhavapeddy et al., ”Jitsu: Just-in-time summoning of unikernels,”
in 12th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 15), pp. 559-573, 2015.

[17] Manco, Filipe, et al. ”My VM is Lighter (and Safer) than your
Container.” Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017.

[18] Wang, Xiaofei, et al. ”Cache in the air: exploiting content caching and
delivery techniques for 5G systems,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 131-139, 2014.

[19] Cho, Kideok, et al. ”Wave: Popularity-based and collaborative in-
network caching for content-oriented networks,” Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on.
IEEE, 2012.

[20] Alay, O., Lutu, A., Garca, R., Pen-Quirs, M., Mancuso, V., et al.
”Measuring and assessing mobile broadband networks with MONROE.”
World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2016 IEEE 17th International Symposium on A. IEEE, 2016.

[21] Alay, O., Lutu, A., Ros, D., Garcia, R., Mancuso, V., et al. ”MONROE:
Measuring mobile broadband networks in Europe.” Proceedings of the
IRTF and ISOC Workshop on Research and Applications of Internet
Measurements (RAIM). 2015.

[22] Zeni, Mattia, Daniele Miorandi, and Francesco De Pellegrini. ”YOUS-
tatAnalyzer: a tool for analysing the dynamics of YouTube content popu-
larity.” Proceedings of the 7th International Conference on Performance
Evaluation Methodologies and Tools. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering), 2013.

[23] Aue, A., Hormann, S., Horvath, L. and Reimherr, M. ”Break detection
in the covariance structure of multivariate nonlinear time series models,”
The Annals of Statistics vol. 37, no. 6B, pp. 4046-87, 2009.

[24] Fryzlewicz, P. ”Wild binary segmentation for multiple change-point
detection,” The Annals of Statistics vol. 42, no. 6, pp. 2243-2281, 2014.

[25] Hoga, Y., ”Monitoring Multivariate Time Series,” Journal of Multivariate
Analysis vol. 155, pp. 105-121, 2017.

[26] A. G. Tartakovsky, A. S. Polunchenko, and G. Sokolov, ”Efficient com-
puter network anomaly detection by changepoint detection methods,”
IEEE Journal on Selected Topics in Signal Processing,, vol. 7, no. 1,
pp. 4-11, 2013.

[27] Fremdt, S., ”Asymptotic distribution of the delay time in Pages sequen-
tial procedure,” Journal of Statistical Planning and Inference vol. 145,
pp. 74-91, 2014.

[28] V. Chandola, A. Banerjee, and V. Kumar, ”Anomaly detection: A
survey,” ACM computing surveys (CSUR), vol. 41, no. 3, article 15,
2009.

[29] A. K. Marnerides, A. Schaeffer-Filho, and A. Mauthe, ”Traffic anomaly
diagnosis in Internet backbone networks: a survey,” Computer Networks,
vol. 73, pp. 224-243, 2014.

[30] I. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang, L. Su, L. L. Ko
and V. L. L.Thing , ”Anomally detection and attribution in networks with
temporally correlated traffic,” IEEE/ACM Transactions on Networking,
pp. 1-14, 2017.

[31] S. S. Kim and A. L. N. Reddy, ”Statistical techniques for detecting
traffic anomalies through packet header data,” IEEE/ACM Transactions
on Networking, vol. 16, no. 3, pp. 562-575, 2008.

[32] G. Thatte, U. Mitra, and J. Heidemann, ”Parametric methods for
anomaly detection in aggregate traffic,” IEEE/ACM Transactions on
Networking, vol. 19, no. 2, pp. 512-525, 2011.

[33] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, ”California
fault lines: understanding the causes and impact of network failures,”
ACM SIGCOMM CCR, vol. 41, no. 4, pp. 315-326, 2011.

[34] S. Skaperas and L. Mamatas, ”Change point detection for load balancing
based on content popularity,” 16th Mathematics of Networks (MoN)
meeting, September 12, Sussex, 2017.

[35] Lopez-Pires, Fabio, and Benjamn Barn. ”Virtual machine placement
literature review,” Polytechnic School, National University of Asuncion,
Tech. Rep., 2015, Available: http://arxiv.org/abs/1506.01509.

[36] G. Siracusano, R. Bifulco, M. Trevisan, T. Jacobs, S. Kuenzer, S. Sal-
sano, N. Blefari-Melazzi and F. Huici. ”Re-designing Dynamic Content
Delivery in the Light of a Virtualized Infrastructure,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2574-2585,
2017.

[37] S. Kuenzer, A. Ivanov, F. Manco, J. Mendes, Y. Volchkov, F. Schmidt,
K. Yasukata, M. Honda and F. Huici, ”Unikernels Everywhere: The case
for Elastic CDNs,” in Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 17).
ACM, New York, NY, USA, 2017.

[38] CDNSim - a stream-level simulator for large content delivery networks,
https://github.com/cnplab/cdnsim

[39] Node-RED: http://nodered.org/.
[40] Horvth, L., Kokoszka, P., and Steinebach, J. ”Testing for changes in

multivariate dependent observations with an application to temperature
changes”. Journal of Multivariate Analysis,vol. 68, no. 1, pp. 96-119,
1999.

[41] Newey, Whitney K., and Kenneth D. West. ”A simple, positive semi-
definite, heteroskedasticity and autocorrelation consistent covariance
matrix.” National Bureau of Economic Research Cambridge, Mass.,
USA, 1986.

[42] Ju, Vostrikova L. ”Detecting disorder in multidimensional random pro-
cess.” Soviet Math. Dokl. Vol. 24. 1981.

[43] Inclan, C., and Tiao, G. C. ”Use of cumulative sums of squares for
retrospective detection of changes of variance”. Journal of the American
Statistical Association, vol. 89, no. 427, pp. 913-923, 1994.

[44] G. Appel, ”Become Your Own Technical Analyst,” The Journal of
Wealth Management, vol.6, no.1, pp. 27-36, 2003.

[45] Ansible:https://www.ansible.com
[46] Httperf HTTP load generator: https://github.com/httperf/httperf
[47] Collectd - The system statistics collection daemon:

https://collectd.org/download.shtml
[48] InfluxData (InfluxDB) — Time Series Database Monitoring & Analytics:

https://www.influxdata.com/developers/
[49] Grafana - The open platform for analytics and monitoring:

https://grafana.com/
[50] Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., and Ohlman,

B. ”A survey of information-centric networking”. IEEE Communications
Magazine, vol. 50, no. 7, 2012.

