
Multi-PoP Network Slice Deployment:
A Feasibility Study

Polychronis Valsamas∗, Panagiotis Papadimitriou∗, Ilias Sakellariou∗, Sophia Petridou∗,
Lefteris Mamatas∗, Stuart Clayman†, Francesco Tusa† and Alex Galis†

∗Department of Applied Informatics
University of Macedonia

Thessaloniki, Greece
{xvalsama, papadimitriou, iliass, spetrido, emamatas}@uom.edu.gr

†Department of Electronic and Electrical Engineering
University College London

London, UK
{s.clayman, francesco.tusa, a.galis}@ucl.ac.uk

Abstract—Network slicing is seen as a key enabler for meeting
the diverse network service requirements, which stem from
the transition to 5G. Furthermore, network slicing provides
inherent support for multi-tenancy, enabling network providers
to slice their infrastructure and resell it to a large number
of tenants. Most existing work on slicing has been focused
on certain mechanisms (e.g., slice embedding) and architecture
specifications. As such, the performance and scalability with
network slice instantiation has not been studied in depth. These
aspects are even more critical in the case of slice deployments
across multiple Points-of-Presence (PoP), since the various slice
components should be stitched together for the end-to-end slice
instantiation. In this paper, we present the design and prototype
implementation of a network slicing architecture, based on which
we perform a feasibility study of network slicing using multiple
experimental infrastructures. Our prototype implementation sup-
ports all the required functionality for slice instantiation, such as
resource discovery, slice embedding, resource provisioning, link
setup, and inter-PoP slice segment stitching. Our experimental
results corroborate the feasibility of multi-PoP network slicing.
We further gain useful insights on slice instantiation performance
and scalability.

I. INTRODUCTION

Network slicing has recently been promoted as a key enabler
for leasing service-tailored bundles of computing, network,
and storage resources, which are often termed as verticals [1]–
[3]. This essentially fosters the integration of existing and
novel network services into the infrastructure, as well as en-
abling the co-existence of multiple services with significantly
different requirements in terms of bandwidth, delay, resilience
and/or security. Network Function Virtualization (NFV) [4]–
[6] and Software-Defined Networking (SDN) [7], [8] comprise
some of the main enablers for network slicing.

Network slicing is usually not limited to only provisioning
isolated resource bundles, but it also encompasses resource
management and orchestration primitives on per-slice-basis.
As such, tenants are allowed to exercise fine-grained control
and management on their leased slices, with minimal provider
interventions. This level of control can be attained, e.g.,
by deploying a dedicated Virtualized Infrastructure Manager
(VIM) per slice, as advocated by the NECOS project [9]. Alter-
natively, independent slice control could be enabled through a

shim layer on top of a shared VIM. Since the latter introduces
high complexity, we assume a VIM-on-demand slicing model
in the rest of this paper [10].

In practice, the concurrent deployment and operation of
network slices on top of shared infrastructures poses the need
for diverse functionality spread across different layers of the
network slicing architecture. For example, network slicing
requires mechanisms to advertise, discover, select, and allocate
resources for slice creation. In the case of slices spanning
multiple Points-of-Presence (PoP) or different administrative
domains, additional mechanisms are required for stitching
together the different slice segments in order to instantiate
the slice. While the efficiency of certain slicing mechanisms,
e.g., slice embedding [11], is well understood, the feasibility
of a multi-PoP slice deployment has not been studied so far, to
the best of our knowledge. Existing prototype implementations
mainly pertain to network (function) virtualization [12], [13],
and are typically limited to single-PoP deployments.

Along these lines, we conduct a feasibility study of multi-
PoP network slice deployment to assess the timescales at
which slices can be provisioned and further identify potential
scalability bottlenecks. This study is carried out on top of
geographically dispersed experimental infrastructures, which
essentially offer a realistic setup for evaluation of slice pro-
visioning performance. Our feasibility study is carried out
using a prototype implementation of a network slicing archi-
tecture, which addresses the main needs of the network slice
deployment, i.e., resource discovery, slice embedding, resource
provisioning, tunnel setup, and inter-PoP slice segment stitch-
ing. Additional support for service deployment and resource
monitoring provides the necessary means for quantifying the
network slicing gains on certain applications or services.

In the following, Section II provides an overview of the
NECOS network slicing architecture, on which our feasibility
study relies upon. Section III discusses a proof-of-concept
implementation for network slice instantiation with detailed
descriptions of the individual steps taken for multi-PoP slice
deployment. In Section IV, we present our experimental re-
sults, and finally in Section V, we highlight our conclusions
and give future work directions.

Resource
Marketplace

Slice
Activator

Slice

D
o

m
a
in

 O
rc

h
e

s
tra

to
r

Domain Mgm

D
o

m
a
in

 O
rc

h
e

s
tra

to
r

Domain Mgm

Net Central DC

D
C

 Slice
 C

o
n

tro
lle

r

S
lic

e
 A

g
e

n
t

VIM 2 MonMonWIMVIM 1 Mon

W
A

N
 Slice

C

o
n

tro
lle

r

S
lic

e
 A

g
e

n
tVIM / WIM specific

Control Interface

Slice Marketplace Interface

Slice
Broker

D
o

m
a
in

 O
rc

h
e

s
tra

to
r

D
C

 Slice
 C

o
n

tro
lle

r

S
lic

e
 A

g
e

n
t

Domain Mgm

Edge DC

Slice
Description

Resource Domains

Service
Orchestrator

Slice Request Interface

Slice Runtime Interface

VIM / WIM specific
Monitoring Interface

Slice Instantiation Interface

N
EC

O
S

Slice
 P

ro
vid

e
r

Slice Builder

Slice Spec.
Processor

C
lo

u
d

 to
 C

lo
u

d
 In

terface

Client to Cloud Interface

Slice Orchestrator

Infrastructure & Monitoring Abstraction

Service Level
Monitoring

NECOS zoneTenant’s zone Provider’s zone

Slice Resource
Orchestrator

Slices
Database

Resource & VM Management Resource & VM Monitoring

Adapters

Fig. 1: NECOS slicing architecture.

II. NETWORK SLICING ARCHITECTURE

The proposed feasibility study relies on a prototype im-
plementation of the network slicing architecture introduced
by the NECOS project [2]. The NECOS architecture aims
at creating slices by dynamically discovering and allocat-
ing resources that span over multiple PoP or administrative
domains. The NECOS architecture consists of a number of
functional components that inter-operate to deliver the end-to-
end slice requested by the tenant [14], as depicted in Fig. 1.
The scope of such a distributed design approach is twofold:
it enables flexible adaptation of the system to the different
needs of the participants to the NECOS ecosystem; it allows a
clear separation of concerns during the system implementation
phase. To achieve this, it primarily considers three roles:

• the NECOS Slice Provider, which is part of the NECOS
ecosystem and is responsible to deploy and operate slices,
based on the Tenant’s request;

• the Slice Broker, which is responsible for dynamic re-
source discovery and acts as the core of the Marketplace;

• the DC and WAN Providers that offer either Data Center
(DC), or network (WAN) resources, which will become
the slice-segments of the deployed end-to-end slices.

The architecture allows an administrative authority to fulfil
more than one role, e.g., an operator can offer a number of
both DC and WAN resources and can act as the NECOS Slice
Provider at the same time.

A tenant triggers a slice request in the Slice Activator,
which could be a Graphical User Interface (GUI) designed
to receive the slice specifications. This specification could
be derived by the service graph, i.e., a description of the
service to be hosted by the slice, along with any geographic
(e.g., edge cloud location to host a service function) and
resource specific constraints. This partial description of the

slice is further refined by the Slice Specification Processor,
which details the slice specification adding the slice graph, i.e.,
slice-segments and their necessary connections, along with a
mapping between the latter and the service components.

The Slice Builder receives this specification and is respon-
sible for: (i) initiating the resource discovery process in the
Marketplace, (ii) resource selection based on the available
slice-segments received from the former, (iii) resource instanti-
ation via contacting the DC Controllers of each slice-segment,
and finally, (iv) communicating this information to the Slice
Resource Orchestrator in order to finalise the end-to-end slice
creation and proceed with the required activation.

The Slice Broker is the main Marketplace component. Its
role consists of receiving a slice request in the form of a “par-
tial” slice description, decomposing it into a number of single
slice-segment resource requests addressed to the appropriate
DC and WAN Slice Agents, and compiling a response back
to the Builder. This response includes alternative proposals
for each slice-segment from providers that hold the resources
to accommodate them. Each proposal can potentially include
information regarding cost or quality characteristics that will
be used by the Builder to make the most appropriate (in terms
of matching requirements) end-to-end slice configuration de-
cision.

Two highly interconnected components reside on the re-
source providers’ domain. The Slice Agent, responsible for
replying to Broker requests by checking current resource
availability, and the DC or WAN Controller. A controller is
responsible for creating a slice-segment, i.e., for managing
the provider’s resources that will be offered to the NECOS
ecosystem; allocating resources on-demand as requested by the
Builder; deploying on-demand VIMs and monitoring services
for the slice-segment; and for any end-of-life operations, e.g.,
slice-segment decommission.

IMA

Slice Resource

Orchestrator

Resource & VM

Management

Resource & VM

Monitoring

Service

Definition

Tenant GUI

PDT
(Partially Defined

Template)

PoP

Resource

Discovery
Slice Builder

Slice Spec

Processor

Slice Requirements

Specification

ANSIBLE

SCRIPTS

NECOS Functional Component

Technology Used

Information Descriptor

Infrastructure

S
lic

e

E
m

b
e
d
d

in
g

S
e
rv

ic
e

D
e
p
lo

y
m

e
n
t

Fed4FIRE GENI

jfed CLI geni-lib local-lib

JSON

M
o
n
ito

rin
g

A
c
tiv

a
tio

n

PoP Resource

Allocation

Slice Operation

S
lic

e

S
titc

h
in

g

P
h
y
s
ic

a
l

R
e
s
o
u
rc

e

A
llo

c
a
tio

n

JSON

PoP Network

Controller

Local

Fig. 2: Slice workflow overview.

The Slice Resource Orchestrator (SRO) manages the lifecy-
cle of all the (stitched) slice-segments and orchestrates the ser-
vice elements across the end-to-end slice, i.e., it performs the
placement of service components into the resource domains.
These actions are performed according to the monitoring
information provided by the Infrastructure and Monitoring Ab-
straction (IMA) component. The IMA is a uniform abstraction
layer introduced in order to hide the specific technological
implementation of the VIM / WAN Infrastructure Manager
(WIM) and monitoring subsystems in each slice segment.
A uniform northbound interface offered by IMA allows the
SRO to perform his specific functions in an abstracted way:
a technology specific, pluggable adaptation layer to different
VIMs/WIMs and monitoring systems is in place at the south-
bound of the IMA to implement the required abstraction.

Finally, the Slice Database is the component specifically
introduced for storing the information related to the different
end-to-end slices.

III. PROTOTYPE IMPLEMENTATION

This section presents our prototype implementation for real-
ising deployment of slices according to the NECOS approach.
Compared to the NECOS architecture, we focus on a multi-
PoP rather than on a multi-provider environment. This means
that our implementation supports a simplified Marketplace op-
eration (Fig. 2): the Slice Broker acts as a Broker Agent as well,
being responsible to report on the resource availability in the
different PoPs. Along these lines, we replaced the above two
entities with a new component called PoP Resource Discovery.
For the same reason, the PoP Resource Allocation and PoP
Network Controller components implement the functionalities
of the DC Slice Controllers and WAN Slice Controllers,
respectively. Slice embedding over multiple Infrastructure and
WAN providers is a complex enough operation to deserve an
independent study [15].

We start by discussing the prototype with the functional
description of the required steps for the slice deployment and
then give an overview of the deployment workflow along with
basic implementation details of the associated components.

The slice deployment operation involves the following steps:
• Slice Requirements Specification: The Tenant defines

the slice requirements that include: (i) general slice

parameters, including geographic constraints, cost model
to use, monitoring options and slice time-frame (e.g., du-
ration); (ii) a service graph consisting of service elements
and links with particular demands for physical and/or
virtual resources (e.g., VIM type and configuration); (iii)
slice stitching requirements, such as bandwidth demands
and resource reservation or tunnelling protocol.

• Slice Embedding: In this slice deployment step, our
facility relies on the Marketplace, which makes initial
decisions for the slice and dynamically discovers physical
resources that match the expressed demands. Practically,
it defines the number of slice-segments and how to
distribute the service elements among them, collects the
resource offers from different Infrastructure and WAN
Providers, and determines which of them to accept.

• Physical Resource Allocation: This step involves the
allocation and booting up of physical servers and network
devices in the different slice-segments. This is followed
by the deployment of the required Operating Systems
and VIMs, and completed by booting up all the physical
resources. We emulate the edge routers with diverse
communication capabilities using physical machines that
support tunnelling protocols and bandwidth throttling.

• Slice Stitching: The facility stitches the slice-segments
together by establishing the WAN connection between
them and the required intra-domain network configura-
tions. Furthermore, it employs the VLAN or VXLAN
protocols for slice isolation. Finally, all slice servers are
connected to each other on a private IP network.

• Service Deployment: This step involves the service de-
ployment, which includes the transfer of the VM images
to specific servers, the creation of the VMs, and their
boot up. The service activation usually terminates with
an additional service configuration process.

• Monitoring Activation: The last step includes the de-
ployment and configuration of the requested monitoring
capabilities from the Tenant. This is associated with the
activation of probes for the requested Key Performance
Indicators (KPIs) via the deployment of a particular
monitoring tool, e.g., Lattice [16], Prometheus [17] and
Collectd [18]).

We now present an overview of the slice deployment work-
flow (i.e., as shown in Fig. 2) and the basic implementation
details of the prototype components. The Tenant realizes the
Slice Requirements Specification through a GUI, which
produces the Service Definition schema elaborated in [15].
The Slice Specifications Processor, the Slice Builder and
the PoP Resource Discovery components jointly implement
the Slice Embedding step. The PoP Resource Allocation
allocates on-demand the physical machines and deploys the
requested VIM. The last two components act as wrappers
of the novel FED4FIRE [19] and GENI [20] testbed tools
(i.e., jfed CLI and geni-lib), in a similar approach to [21].
Furthermore, the same components access a similar testbed
control abstraction handling our own UOM testbed. After

Web Servers

Cluster

SLB

BT
Network

Tunnel

DC Slice Segment

Slice Part A

DC Slice Segment

Slice Part C

WAN Slice Segment

Slice Part B

The Content Distribution Service

One of the

FED4FIRE test-beds

UOM test-bed

Fig. 3: Content distribution service slice.

the allocation of physical machines deployed at the different
PoPs (i.e., slice-segments), the Slice Builder communicates
with the Slice Resource Orchestrator (SRO), which in turn
realizes the Service Deployment and Monitoring Activation
through Ansible scripts. Lastly, the SRO oversees the Slice
Operation; however, this is not part of the current work.
The PoP Resource Allocation, PoP Resource Discovery and
PoP Network Controller have been implemented in Python,
whereas the other NECOS components as Node-RED nodes1.
All of them exchange information descriptors specified as
JSON messages, in accordance with the NECOS information
model [15].

IV. EXPERIMENTAL EVALUATION

A. Evaluation Environment

In this section, we experimentally validate the aforemen-
tioned slice deployment steps, namely the Slice Embedding
(SEmb), Physical Resource Allocation (PRA), Slice Stitching
(SS), Service Deployment (SDepl) and Monitoring Activation
(MAct) processes, through our prototype implementation of the
NECOS architecture. We consider a distributed content service
that geographically spans over Europe and USA. We assume
that a Tenant requests a slice consisting of the following
service functions: (i) a cluster of Web servers; (ii) a service
load balancer (SLB); and (iii) benchmarking tools (BT). We
further consider that the Tenant specifies each service function
to be allocated in a particular geographic location, and thus,
the service functions span two different DC slice segments,
as depicted in Fig. 3. In particular, the left DC slice segment
contains resources from the FED4FIRE testbeds federation,
whereas the right DC slice segment consists of physical
resources located at our own UOM testbed. To emulate the
WAN slice segment that stitches the DC slice segments, we
deploy an additional physical machine at each side, acting as
an edge router.

To proceed with the slice deployment, we define the service
and slice requirements as a generic YAML slice-information
input that includes the three slice segments. In more detail, the
DC slice segment at the UOM testbed consists of six physical
nodes hosting: (i) a service load balancer which distributes
(i.e., in a round robin fashion) the Web traffic of a number
of clients to the Web servers located at the left-side DC slice

1https://nodered.org/

segment; and (ii) the benchmarking tools emulating the clients’
behaviour. The DC slice segment with the Web servers’ cluster
is physically located in the USA (i.e., the CloudLab Utah
testbed) and is accessed through the FED4FIRE facility. The
number of physical machines in this segment is expressed
by the parameter Nodes of our experiment, which is in the
range of [5 . . . 30]. We choose two classes of Nodes’ hardware
type, i.e., the pc3000 class with 3.0 GHz processor, 2 GB
DDR2 RAM and 300 GB storage, and the d430 class with
two 2.4 GHz 8−core processors, 64 GB DDR4 RAM and 2.2
TB storage (a detailed description of hardware specifications
can be found at https://wiki.emulab.net/wiki/UtahHardware).
The first class could serve as edge cloud and the latter as
core cloud. In this particular DC slice segment, we consider
the deployment of a Web server per physical node, define the
virtualization technology (i.e., ClickOS), and further specify
the service resource flavour (i.e., CPU, RAM utilization and
storage usage) for each Web server. Furthermore, we designate
the traffic policy (i.e., equally, randomly) for the service. The
third slice segment (WAN) is responsible for configuring the
inter/intra-domain connectivity of the DC slice segments. We
boot an extra physical machine in each DC slice side, which
acts as an edge router, and, for simplicity, we use GRE tunnels
to setup the connectivity between them.

To secure intra-connectivity, we configure each physical
node’s routing table to allow the communication with the edge
router of the other side. For inter-domain connectivity, we
assume a star topology where each physical node is connected
to the edge router (central node) and through the edge router
to the remote DC slice segment (physical remote nodes).

For the Monitoring Activation step of slice deployment,
we perform the configuration of the CollectD open-source
monitoring tool. For the allocated physical resources, we
enable the following KPIs: (i) CPU and RAM usage; and (ii)
incoming/outgoing traffic. The tool collects the KPI metrics
every 20 sec (time interval).

B. Experimental Results

Our evaluation results show the slice deployment time when
either core or edge cloud nodes are employed at the DC
slice segment accommodating the Web servers’ cluster. Fig. 4
provides both a general view of the total delay incurred for
slice instantiation, as well as the time spent for each individual
step, i.e., Slice Embedding, Physical Resource Allocation, Slice
Stitching, Service Deployment and Monitoring Activation. De-
lay is expressed as a function of the number of the physical
Nodes deployed at the CloudLab Utah testbed. We report the
results across five runs.

Fig. 4(a) and 4(b) indicate that the less time-consuming
steps are Slice Embedding, Slice Stitching and Monitoring
Activation. Slice Embedding, in particular, is almost fixed
at around 30 secs in the case of core cloud nodes, and at
around 35 − 40 secs in edge clouds. The exact delays along
with the standard deviations are also reported in Table I. The
Slice Stitching step ranges from almost 20 − 120 secs and
25 − 130 secs, for core and edge cloud nodes, respectively.

5 10 15 20 25 30

Nodes

0

200

400

600

800

1000

1200

1400

1600

T
im

e
 (

s
e
c
)

Monitoring Activation

Service Deployment

Slice Stitching

Physical Resource Allocation

Slice Embedding

(a) Core cloud nodes

5 10 15 20 25 30

Nodes

0

200

400

600

800

1000

1200

1400

1600

T
im

e
 (

s
e
c
)

Monitoring Activation

Service Deployment

Slice Stitching

Physical Resource Allocation

Slice Embedding

(b) Edge cloud nodes

Fig. 4: Slice deployment time.

This step along with the monitoring increase linearly with
the number of nodes. The Monitoring Activation starts at 16
sec and reaches almost 100 secs (Fig. 4(a)), whilst it ranges
from 21 to 133 secs in Fig. 4(b). These results show slightly
lower delays when edge cloud nodes are allocated for the DC
slice segment. Especially, the Slice Embedding step does not
yield any scalability limitation, at least in the scale of our
experimental setup.

On the other hand, the Physical Resource Allocation and
the Service Deployment steps are the most time-consuming.
Resource allocation involves the servers’ boot-up time, which
entails the prolongation of the total deployment time. However,
in case of the core cloud nodes, the resource allocation requires
as much as 74% of deployment time when Nodes = 5,
which significantly decreases at 30% when Nodes = 30. The
corresponding percentages range from 69 − 37% in case of
edge cloud nodes. This decrease is due to the fact that the
time remains almost stable with the increase of the nodes.
In contrast to this observation, the delay incurred for Service
Deployment increases with the number of nodes. As a result,
service deployment attributes 14 − 40% and 16 − 38% (in
respect to the number of nodes) of the total slice deployment
time when core and edge cloud nodes are employed, respec-
tively.

5 10 15 20 25 30

Nodes

0

20

40

60

80

100

120

140

T
im

e
 (

s
e
c
)

Intra-Domain Network Configuration

Inter-Domain Network Configuration

(a) Core cloud nodes

5 10 15 20 25 30

Nodes

0

20

40

60

80

100

120

140

T
im

e
 (

s
e
c
)

Intra-Domain Network Configuration

Inter-Domain Network Configuration

(b) Edge cloud nodes

Fig. 5: Slice stitching time.

In Figs. 5(a) and 5(b), we further elaborate on the time
required for Slice Stitching. As described in the experimental
environment section, the WAN slice segment configures con-
nectivity both inside the DC slice segments, and between the
two geographically remote segments, as well. In these figures,
the light dark and grey areas correspond to the intra- and
inter-domain network configuration, respectively. According to
these plots, intra-domain network setup incurs longer delays
compared to the inter-domain network configuration, irrespec-
tive of the type of cloud nodes. This stems from the fact
that in slice stitching, physical node configuration takes place
sequentially, whereas in the intra-domain case configurations
are applied to a larger number of nodes (compared to inter-
domain).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the feasibility of multi-PoP slice
deployment, motivated by the increasing interest in network
slicing, as means for multi-service and multi-tenancy. We
relied on a prototype implementation which provides sup-
port for slice and service deployment, based on the slice
instantiation workflow exemplified in the NECOS architecture.
Our results and micro-benchmarks across a diverse range of
network slice sizes corroborate that slice instantiation delay
scales linearly with the slice size. The dominant factor is

TABLE I: Standard deviation of deployment time for core and edge cloud nodes

Step SD (σ) in sec Core cloud nodes Edge cloud nodes
5 10 15 20 25 30 5 10 15 20 25 30

MAct Time 16.07 31.83 43.25 57.48 82.44 102.34 21.57 44.91 69.43 86.74 111.19 133.74
SD 1.51 2.87 0.06 0.11 5.92 1.02 1.9 2.43 2.22 2.37 1.98 5.84

SDepl Time 80.56 158.19 235.86 312.97 391.61 469.95 89.41 178.49 262.38 346.66 420.19 508.21
SD 0.24 0.93 1.19 1.65 1.33 0.76 3.18 4.92 10.77 11.12 3.01 7.81

Intra-domain SS Time 12.01 24.06 31.04 41.22 62.32 78.59 15.24 29.91 45.04 62.72 74.99 90.85
SD 1.54 3.18 0.09 0.04 6.06 0.97 2.63 0.66 0.35 2.36 1.17 2.44

Inter-domain SS Time 8.84 13.28 10.67 13.05 30.15 39.64 9.07 17.07 23.23 28.72 34.96 41.03
SD 2.75 4.54 0.14 0.43 8.34 0.24 2.81 0.59 0.72 0.85 0.22 0.55

PRA Time 426.91 434.49 428.50 419.09 442.61 453.93 379.73 406.53 488.59 512.8 508.44 497.95
SD 5.04 10.88 0.52 28.84 4.44 17.18 26.83 35.22 29.65 10.99 1.36 30.13

SEmd Time 31.31 37.79 30.02 32.83 29.17 32.56 34.36 30.33 32.4 36.19 39.54 45.44
SD 3.06 10.08 2.28 3.90 1.51 1.96 5.05 4.54 4.66 10.36 8.44 19.66

physical resource allocation, which involves the booting of
servers. In contrast to resource allocation (which is out of our
control in the remote experimental infrastructures), both slice
embedding and stitching incur low delays, and certainly do
not introduce any scalability limitation, at least at the scale of
our experimental setup.

In principle, there is room for optimizations (especially
within the slice provider’s domain) in order to reduce the
slice instantiation delay. For example, slice instantiation tasks,
executed across servers (e.g., virtual machine setup and con-
figuration) and switches, can run in parallel to substantially
speed up resource provisioning. We further plan to employ
more advanced slice embedding mechanisms (e.g., [11]) and
investigate the scalability of multi-domain slice instantiation
with near-optimal slice embeddings.

ACKNOWLEDGMENTS

This work has received funding from the EU’s Horizon 2020
research and innovation programme through the 4th open call
scheme of the FED4FIRE+ (grant agr. no 732638), the EU-
BRA Horizon 2020 NECOS Project (grant agr. no 777067),
and the MESON project, co-financed by the European Union
and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH - CREATE - INNOVATE (project code:
T1EDK-02947).

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 94–100, May 2017.

[2] F. S. D. Silva, M. O. O. Lemos, A. Medeiros, A. V. Neto et al., “NECOS
project: Towards lightweight slicing of cloud federated infrastructures,”
in 4th IEEE Conf. on Network Softwarization and Workshops, June 2018,
pp. 406–414.

[3] H. Zhang, N. Liu, X. Chu, K. Long et al., “Network slicing based
5g and future mobile networks: Mobility, resource management, and
challenges,” IEEE Communications Magazine, vol. 55, no. 8, pp. 138–
145, Aug 2017.

[4] NFV White Paper, “Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges & Call for Action. Issue 1,” Oct. 2012.

[5] M.-A. Kourtis, M. J. McGrath, G. Gardikis, G. Xilouris et al., “T-NOVA:
An open-source MANO stack for NFV infrastructures,” IEEE Trans.
Netw. Service Manag., vol. 14, no. 3, pp. 586–602, Sept 2017.

[6] B. Sousa, L. Cordeiro, P. Simoes, A. Edmonds et al., “Toward a
fully cloudified mobile network infrastructure,” IEEE Transactions on
Network and Service Management, vol. 13, no. 3, pp. 547–563, Sep
2016.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar et al., “Open-
flow: Enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[8] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An
intellectual history of programmable networks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[9] S. Clayman, F. Tusa, and A. Galis, “Extending Slices into Data Centers:
the VIM on-demand model,” in IEEE 9th International Conf. on Network
of the Future - NoF, Pozna, Poland., 19-21 November 2018.

[10] L. A. Freitas, V. G. Braga, S. L. Correa, L. Mamatas et al., “Slicing and
allocation of transformable resources for the deployment of multiple
virtualized infrastructure managers (VIMs),” in 4th IEEE Conf. on
Network Softwarization and Workshops, June 2018, pp. 424–432.

[11] D. Dietrich, A. Rizk, and P. Papadimitriou, “Multi-provider virtual
network embedding with limited information disclosure,” IEEE Trans.
Netw. Service Manag., vol. 12, no. 2, pp. 188–201, June 2015.

[12] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann et al., “Network
virtualization architecture: Proposal and initial prototype,” in Proc.
of the 1st ACM Workshop on Virtualized Infrastructure Systems and
Architectures, ser. VISA ’09, 2009, pp. 63–72.

[13] P. Papadimitriou, I. Houidi, W. Louati, D. Zeghlache et al., “Towards
large-scale network virtualization,” in Wired/Wireless Internet Commun.,
2012, pp. 13–25.

[14] S. Clayman and A. Galis, “D3.2: NECOS System Architecture
and Platform Specification.V2,” 4 2019. [Online]. Available: http:
//www.h2020-necos.eu/documents/deliverables/

[15] P. D. Maciel, F. L. Verdi, P. Valsamas, I. Sakellariou et al., “A
marketplace-based approach to cloud network slice composition across
multiple domains, submitted,” in 4th IEEE Conf. on Network Softwariza-
tion and Workshops, June 2019.

[16] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with lattice,” in 2010 IEEE/IFIP Network Operations and Management
Symposium Workshops. IEEE, 2010, pp. 239–246.

[17] “Prometheus, Monitoring system and time-series database,” https://
prometheus.io, 2016, [Online; accessed Apr-2016.]].

[18] “Collectd - The system statistics collection daemon,” https://collectd.
org/, 2015, [Online; accessed Dec-2015].

[19] T. Wauters, B. Vermeulen, W. Vandenberghe, P. Demeester et al.,
“Federation of internet experimentation facilities: architecture and im-
plementation,” in European Conf. on Networks and Commun., Jun. 2014,
pp. 1–5.

[20] M. Berman, J. S. Chase, L. Landweber, A. Nakao et al., “Geni:
A federated testbed for innovative network experiments,” Computer
Networks, Elsevier, vol. 61, pp. 5–23, Mar. 2014.

[21] P. Valsamas, I. Sakellariou, S. Petridou, and L. Mamatas, “A multi-
domain experimentation environment for 5g media verticals,” in IEEE
INFOCOM Workshop on Computer and Networking Experimental Re-
search using Testbeds 2019 (CNERT), April 2019.

