Microservices-Adaptive Software-Defined Load
Balancing for 5G and Beyond Ecosystems

Sarantis Kalafatidis, Member, IEEE, and Lefteris Mamatas, Member, IEEE

Abstract—Although 5G networks achieve impressive improve-
ments in terms of latency, data rates and network capacity, their
evolution requires the synergy of networks, clouds and appli-
cations. For example, targeted challenging applications require
efficient end-to-end performance, impacted by emerging tech-
nologies beyond radio, including: (i) Software-Defined Networks
(SDNs) enabling programmability in the network environment
from a centralized viewpoint; (ii) cloud orchestrators dynami-
cally adapting server resource allocation to dynamic workloads;
and (iii) microservice-based applications consisting of minimal,
single-purpose service functions communicating with each other,
individually implemented and scaled towards efficient resource
allocation and fault-tolerance. In this context, we propose an SDN
load balancing solution for a specific class of services consisting
of microservices with heterogeneous but simpler network and
server resource requirements, compared to the resource-demands
of the whole service. Our proposal adapts to the estimated
resource demands of individual microservices, balances resource
utilization among cloud servers and improves service operation
in terms of response times, throughput and fairness. We validate
experimentally the proposed platform and its mechanisms with a
particular 5G and beyond use-case with the above characteristics.

Index Terms—Software-Defined Networks, Load Balancing,
Microservices, Microservices Profiling, 5G and Beyond Networks

I. INTRODUCTION

5G and beyond networks (5GB) are enabling new applica-
tions and network services with challenging, stringent require-
ments, including for ultra-low delays and high throughput,
which are radically transforming vertical sectors, including
manufacture, media & entertainment, automotive industry and
energy. The main goals of 5GB include (i) exploiting higher
frequency bands for improved throughput, e.g., millimeter-
wave (mmWave) spectrum; (ii) improving spectrum usage
efficiency through its intelligent management; and (iii) rad-
ically transforming the telecommunication system with the
virtualization of physical network functions, reducing the
capital expenditure (CAPEX) and improving the deployment
and configuration flexibility.

Since challenging application performance concerns end-
to-end (E2E) communication efficiency, 5G and beyond net-
works participate in flexible ecosystems integrating emerging
technologies that maintain a systemic view of and adapt
the network or cloud environment to dynamic changes in
resource conditions or application requirements. Indicatively,
for a 50ms E2E delay documented in 5G paper [1], radio
access network (RAN) contributed to the 13%, while network
and cloud application aspects to the 87% of delay. As a bottom
line, communication and capacity improvements should be

matched by particular transformations at higher layers of net-
work stack and computation aspects, i.e., jointly implementing
awareness and adaptability of radio, network and cloud-based
applications.

Regarding radio, the cloudification of RAN processes, e.g.,
Open RAN [2], allows multiple independent instances of RAN
functions to run on common hardware platforms. However,
this technological approach requires efficient workload as-
signment and resource management improvements, since the
virtualization of network devices may introduce performance
issues, such as increased energy consumption. For example,
Open RAN deployments can balance their user load among
different radio cells, which is typically asymmetric. Further-
more, the resource requirements of highly-demanding 5GB
applications (e.g., virtual reality) vary over time and call
for dynamic adaptations of RAN resources towards achieving
acceptable service performance levels.

On the networking front, telecommunication networks and
relevant standards are gradually adopting novel networking
paradigms, including Software-Defined Networks (SDNs).
SDNss introduce a global view and programmability of network
environments to implement network services that are bespoke
to particular application requirements. For example, such
requirements can be realized by SDN-based load balancing,
bringing an efficient operation of Open RAN, cloud and
network, as well as reduced energy expenditure. However,
there is a need for a better awareness and adaptability of SDNs
towards challenging services.

The cloud-based applications benefit from the significant
advantages cloud computing brings, such as economies of
scale to support resource-demanding applications, e.g., large
numbers of users, as well as flexibility to adapt to dynamic
changes. For example, virtual or physical resources may scale
(up or down) according to monitored user demands, imple-
menting horizontal and vertical elasticity policies, respectively.

Furthermore, applications should also consider the status
of network environment, cloud resources and the challenging
requirements. Along these lines, many of them adopt the
microservices architectural paradigm. The latter breaks down
complex monolithic applications or network services into a
collection of simple, single-purpose communicating microser-
vices, independently managed and scaled from microservices
orchestrators, such as Kubernetes.

However, in the most complex landscape of 5G networks
and beyond, applications or network services may consist
of functions with heterogeneous resource requirements (e.g.,
some being CPU intensive, others network-sensitive, etc),
increasing the complexity of resource management. We argue
that these functions can be decomposed, based on specific

resource requirements, in stand-alone units of software pack-
ages (i.e., containers). In this context, we assume a specific
class of applications or network services that organizes its
functions in a way that each one of them is characterized
by simpler resource-allocation demands, compared to those
of the whole service. In practice, these functions are being
split into containerized microservices, which we call Resource-
Organized Microservices (ROMs). Here, we investigate im-
proved load balancing among ROMs (i.e, in terms of cloud
resource efficiency and service performance), which estimates
and adapts to the requirements of the latter.

Case 1 - Least Network Load
‘Mem Net ||
45% 1%

. ‘ Common network
policy for all

requests’ types
Load Balancer

I |

M1: CPU-intensive
microservice

Case 2 - Microservices-Adaptive

Mem ||
51%)

Microservice

| scaling needed K

CPU ‘Mem Ne(l Me Net |
82% 42% 49% 5% 52“0
MMM |

Server side,
SDN Domain

Ne|
2%

([cpu)
38%

Net

(fcpu M Mem|
«53%

9“/ 48%) !

Requesti lnr M2

Requests for M1 .§ Requests for M3

Load Balancer
Workload

M3 Network-intensive
microservice

cpul
9%{ 0%)

PU
145%

[Net |
41%)

M2: Memory-intensive
microservice

Fig. 1: Simple vs microservices-adaptive load balancing

In Fig. 1, we illustrate an example snapshot on the operation
of alternative load balancing solutions with a relevant service.
On its left side, we highlight the impact of a simple load
balancing solution prioritizing servers with the least network
load. This leads to an efficient balancing of network resources,
but other resource types may be over-utilized, such as CPU and
memory consumption in first and second servers, respectively.
This strategy also leads to the deployment of additional
microservices to handle the increased load, i.e., to a vertical
elasticity event.

On the right side of Fig. 1, we depict a load balancing mech-
anism that is aware of the particular requirements of all mi-
croservices, the latest resource availability of cloud resources,
as well as of network properties, e.g., network utilization and
flow characteristics. This approach can achieve a better bal-
ance of all resource types, improved application performance,
while avoiding unnecessary elasticity actions. Consequently,
we argue that load balancing should be microservices-aware,
in terms of being aware and adaptable to the dynamic resource
requirements of all microservices implementing the service

Typical load balancing approaches do not fully address the
above requirements, as we show in Table I, where we enlist
indicative related works. For example, Kubernetes usually
employs simple load balancing policies, including: (i) round-
robin, balancing one-to-one requests among available servers,
in a circular fashion; (ii) least network load, assigning requests
to the server with the lower network utilization; and (iii)
shortest expected delay, assigning an incoming job to the
server with the lower estimated expected delay.

As we see in Table I, most relevant approaches balance
load based on network and flow characteristics, while some
of them take into account cloud resource availability [6],
[7]. A few proposals consider individual microservices in the
load balancing decisions, e.g., [8] proposes a chain-oriented
load balancing algorithm to minimize microservice chains
response time and [9] introduces a QoS-aware load balancing
model considering links’ capacity and delay between microser-
vices. Due to the complexity of 5GB microservices-based
applications, a sophisticated load balancing mechanism should
consider most above aspects, i.e., server resources as well as
network properties, including bandwidth availability and flow
characteristics, in order to meet the unique requirements of
each individual microservice.

TABLE I: Well-known load balancing approaches

Flow
char.

Micro-

X Cloud
services

Load balancing (LB) mecha- Net.

nism

Kubernetes round-robin - -
Kubernetes least network load - -
Kubernetes shortest expected - -
delay
Mahout [3] -
FDALB [4] - -
Hedera (5] -
Server Cluster LB [6] -
e-STAB [7] -
LB accross microservices [8] v
LB for Interdependent IoT Mi- v
croservices [9]
MALB v

AYAN

ANNANAN

AR
ANASASANAN
RE

<
<

<
<
<

Along these lines, we propose the Microservices-Adaptive
Load Balancing (MALB) platform and corresponding mecha-
nisms, characterized by the following novelties:

o microservice-awareness through online profiling that
quantifies the level of importance of each resource type,
based on simple prediction techniques.

o microservice-level adaptability of bespoke SDN-based
load balancing policies, considering both cloud (i.e.,
CPU and memory) and network aspects (i.e., bandwidth
allocation and flow sizes, in terms of duration time).

o real experimentation of our approach with an assumed
use-case that consists of ROMs, demonstrating efficient
and balanced server resource allocation, as well as im-
proved application performance in terms of response
times, throughput and fairness.

Although MALB can be used for network services as
well, we are currently considering applications that can be
potentially mapped to ROMs. Investigating network services
in the context of Open RAN is in our future work plans. In
this context, a presentation of a relevant motivating use-case
follows next.

II. MOTIVATING USE-CASE SCENARIO

We assume here a particular virtual reality gaming use-case,
inspired by [11]. It consists of service functions with diverse
characteristics, in terms of resource requirements, function
execution times, and flow sizes, including: (i) video streaming

microservices being bandwidth-intensive and mainly produc-
ing long flows; (ii) user interactions’ microservices, produc-
ing short flows and being characterized by low-latency and
moderate CPU and bandwidth demands; and (iii) back-end
microservices, including on user behavioral analysis, which
are CPU-intensive, but with a fixed execution time to maintain
a given latency, i.e., return the best outcome within a deadline.

Typical dynamic load balancing techniques may monitor
a specific resource type, e.g., network utilization, and assign
each new flow to the least overloaded entity (e.g., server, server
cluster, edge cloud, etc.), in a reactive manner. This may work
well for the video streaming microservices of the use-case,
characterized by intense network communication, however, it
may cause performance issues in other microservices that are
sensitive to different types of resources (e.g., the back-end mi-
croservices) or accommodate flows with shorter sizes than the
monitoring period (e.g., the user interactions’ microservices).

Consequently, load balancing in the context of the consid-
ered use-case should be able to: (i) detect the diverse resource-
requirements of microservices using profiling techniques; (ii)
accommodate alternative load balancing policies, matching the
particular requirements of each microservice type; and (iii)
consider both cloud and network-related viewpoints.

In the sections that follow, we present our relevant proposal
and highlight experimentally its capabilities based on the
considered use-case.

III. PROPOSED SYSTEM

Here, we present our Microservices-Adaptive Load Bal-
ancing (MALB) platform and its corresponding mechanisms,
targeting: (i) the minimum and balanced resource utilization
of both networking and cloud aspects; and (ii) the efficient
operation of applications constituting of multiple types of
microservices with diverse resource-demands. As we show in
Fig. 2, MALB is built on top of an integrated environment
consisting of an SDN-based network and a cloud hosting
containerized microservices, in the form of ROMs. The three
key components of our infrastructure with their operations are:

o the Monitoring Subsystem monitors the SDN-based net-
work, cloud servers and microservices, providing a holis-
tic awareness of the application and its environment.

o the Microservices Profiler dynamically predicts the level
of microservices’ impact on each resource type and
determines the typical flow size characterizing the latter

o the MALB Algorithm balances the load to the particular
requirements of considered microservice-types, exploit-
ing the produced insights regarding the network and cloud
environment hosting the microservice, as well as the
unique resource-demands of the latter.

A detailed description of the above components follows.

A. Monitoring Subsystem

The Monitoring Subsystem enables microservice-awareness
through online monitoring of microservices and their net-
work and cloud server environment. It consists of two main
components: (i) the Monitoring Broker collecting centrally
all monitoring information; and (ii) the Agents handling the

extraction of monitoring data from particular cloud servers.
For simplicity, we currently employ Agents in the servers only,
since we emulate SDN devices through Open vSwitch, i.e., the
latter reports directly to the Monitoring Broker.

Monitoring Broker collects link utilization and flow sizes
from SDN network, as well as CPU and memory utilization
for both cloud servers and each particular microservice. The
network statistics are being provided to the Monitoring Broker
through the Open vSwitch API. This approach offloads the
SDN Controller from all monitoring information, because the
data are being processed from the Microservice Profiler, i.e.,
the former receives summarized information, only. Alterna-
tively, the SDN Controller could lookup link utilization and
flow size data from the switches directly, based on the Open-
Flow protocol. The cloud statistics are being provided from
the Agents, which periodically parse monitoring data from
the docker stats application. Monitoring Broker communicates
with the Agents through REST calls.

The monitoring aspect is critical and challenging on its own.
Our next steps include the implementation of an Agent for
real SDN switches interconnecting physical servers, utilizing
a sophisticated monitoring infrastructure for large-scale service
deployments, like [10], and carry out a study on the impact
of monitoring period, tuning the trade-off between monitoring
accuracy and involved control overhead, e.g., SDN Controllers
are typically overloaded.

The monitoring data represent the input of Microservices
Profiler, which description follows.

B. Microservices Profiler

The microservices-based adaptability of MALB is grounded
on a profiling activity building the complete view of each
microservice, in terms of particular resource demands and
resource status of the surrounding network and cloud envi-
ronment. This process is being handled by the Microservices
Profiler, producing the following two-fold output for each
microservice: its impact degree prediction on diverse resource
types and a classification of its network flows into two cate-
gories, i.e., short and long. This output is being communicated
to the SDN Controller via REST calls, while the historical
values of monitoring data are being stored in a dataset.

The Microservices Profiler collects and processes the latest
monitoring information communicated from the Monitoring
Subsystem for each microservice and calculates a coefficient
for each resource type (i.e., CPU, memory or network), re-
flecting the impact degree of the microservice on the particular
resource to the total normalized resource consumption. Such
values are placed on a window-based prediction mechanism
that estimates the upcoming weights for each resource, af-
ter smoothing their evolution to remove outliers (e.g., CPU
peaks). Although CPU peaks are important for load balancing
[8], we decided to focus here on the average behavior of the
system rather than on variance aspects, for simplicity.

Here, we assume that simple mechanisms exhibit a decent
accuracy in predicting the resource demands of microservices,
due to the single-purpose functionality of the latter. At this
point of investigation, we employ window-based mechanisms

. l o . PR .
ide ° Servers’ side (SDN Domain

I For each new request arrived ask the controller - reactive operation

Resource utilization statistics

A4
SDN Controller

777 Neights Fiow sz ,
sever1LAZENL] | Y lcategorization _ MALB Algorithm
S L 1: for each request do:
o))) L Microservices 2: flowSize = getFlowSize()
< Microservices | | Profiler 3 ab.c=getWeigths()
o] = 4: if flowSize>shortFlowLimit do:
% Server2 l,_AM : i % Forecasting 5: for each server do:
= N~ : R Methods 6: cpufi].mem(i].net[i]= getServerCons()
o Microservices 1= o 7: serverLoad[serverID]=
- : g | £ Monitoring a*cpufi]+b*mem[i]+c=net[i]
@ |Servers Agenyl | ., (B2 Values 8: destination=min(serversLoad)
3 C -l g 5 Dataset 9: else do:
<= 10: simpleRoundRobin()
L Microservices | | @ fLe-—-—-—---- 11: forwordTheRequestsTo(destination)
-~ " Rework stafisies © ~ ">l Resource usage

SDN devices configuration - Set new rules in the flow tables

Network & Cloud
Infrastructure

Monitoring
Subsystem

]

Profiler

Microservices

SDN D Operations Monitoring Data
D Controller > -=>

Fig. 2: The MALB Architecture

based on the Rolling Mean (RM) and the AutoRegressive
Moving Average (ARMA). RM is biased towards the recent
measurements and it smooths the short-term fluctuations, while
ARMA assumes linear dependence for the data. Although
we cannot claim achieving maximum resource prediction
accuracy, such shortcomings were not critical in terms of
validating the key message in the paper, i.e., the importance
of microservice-awareness and microservice-level adaptability.
MALB could ideally employ a bespoke prediction approach to
each resource type, matching the structure of the correspond-
ing time-series. The study of more sophisticated prediction
mechanisms (e.g., also considering variance), starting from
those being recently proposed for Open RAN, is complex
enough to deserve an independent study.

The flow sizes’ classification determines which microser-
vices produce short and which long flows, in terms of flow
duration times, assuming that ROMs produce mostly either
short or long flows. In practice, the Profiler groups the flow
durations per microservice type and tags a microservice as
a short flow one, when its flows last less than a specific
threshold, and as a long, when they last more. This strategy
allows us to handle the case that a flow may be completed,
before a load balancing schema is able to determine the status
of microservices or servers, in terms of resource demands or
availability, respectively.

Here, we argue that simpler policies with low complexity,
including the Round Robin load balancing schema, suffice
for microservices producing short flows, since there is an
insignificant risk of being accumulated in a server, due to their
short duration. We note that short flows benefit greatly from
an efficient resource allocation of long flows sharing the same
resources. In our case, MALB produces an accurate status of
the system every 3 seconds, due to performance constraints of
the open-source facilities we employ, i.e., Floodlight controller
and docker stats tool. For example, a control plane latency
that fluctuates by tens of milliseconds may create monitoring
accuracy issues, in the case of an 1-sec interval.

A brief description of MALB algorithm follows next.

C. MALB Algorithm

The microservice-level adaptability of our load balancing
platform is realized through MALB Algorithm, an SDN Con-
troller module that defines the appropriate destination (i.e.,
server, in our case) to forward each incoming request. In
practice, MALB aims to balance the load among the servers
and bring uniformity in the utilization of network and server
resources, i.e., avoiding both network congestion and server
overloading.

As shown in Fig. 2, MALB receives the outcome of
Microservices Profiler expressing the predicted weighted re-
source demands of each microservice, as well as a catego-
rization of the typical flows’ size of the latter. Furthermore,
it receives frequent snapshots of the resource utilization of all
servers. At this point of investigation, MALB determines the
type of microservice based on its layer-4 ports.

MALB applies the Round Robin load balancing schema
for the short flows (e.g, the user interactions’ microservices),
which is a simple and efficient strategy, in our experience.
In the case of long flows (e.g., the streaming microservices),
requests are being forwarded to the server with the lower esti-
mated load, i.e., combining the weighted resource demands of
the particular microservice with the online resource availability
of the servers. The load of each server is expressed as the
weighted sum of its estimated CPU, memory and network
utilization percentage. The respective weights are «, (3, and ~,
reflecting the importance of each resource type in the particular
microservice.

SDN Controller calculates the load of each server and the
particular microservice and forwards upcoming requests to
the servers with the lowest load, i.e., through applying the
corresponding flow table rules to the SDN devices.

IV. PERFORMANCE EVALUATION

In this section, we provide our experimentation analysis on
the i) evaluation of microservice profiling process of MALB,
while backing relevant design choices; and ii) validation of

MALB proposal, in terms of efficient service performance and
cloud resource utilization.

Since our solution brings together SDN load balancing with
containerized microservices, we conducted our experiments
on Containernet [13], which supports both SDNs and Docker
containers. The studied load balancing mechanisms correspond
to relevant Kubernetes policies, but are implemented in the
Floodlight controller [14]. We simulated the workload, i.e,
characterized by the number of requests from clients, through
the Apache JMeter. We utilize a test-bed environment consist-
ing of two physical servers and one switch. The first server
hosts the client emulation facilities and the second the services.

The considered ROMs are aligned to the proposed use-
case, which are: i) a video streaming service delivering videos
of different sizes, built using VLC server; ii) a web service
representing the users’ interactions functionality based on
Flask web framework; and iii) a back-end service (developed
through PHP using Apache server) which executes demand-
ing calculations with configurable durations. Each type of
microservices is characterized by particular resource require-
ments, i.e., the video streaming service is bandwidth-intensive,
the back-end service is CPU-intensive and the user interaction
service utilizes both processing and network resources, at
a moderate level. The services are configurable to generate
flows with different sizes. We do not vary the number of
deployed microservices, since we focus on optimizing the
system between elasticity events. We have assigned isolated
physical resources to four different sets of microservices, i.e.,
representing four physical servers.

In our experiments, we consider an on-line game event with
a 30-min duration, where the workload is characterized by
three different 10-min phases, which descriptions follow: (i)
gradually increasing, linearly increasing the load over a fixed
time period, resembling gamers entering the event; (ii) stable,
having a fixed workload, assuming a particular number of
active players; and (iii) gradually decreasing, linearly reducing
the workload over the same fixed period, i.e., users are leaving
the system. All requests have been conducted asynchronously,
i.e, using separate threads.

To realize the objectives of our experimentation analysis and
highlight the novel aspects of MALB proposal, we devised the
following scenarios: (i) the microservices profiling, evaluating
the corresponding mechanisms, while motivating and sup-
porting technically our approach to predict the requirements
of microservices, in terms of CPU, memory, and network
resource-demands; and (ii) the MALB platform evaluation
scenario that validates the novel features of our proposal.

A. Scenario 1: Microservices Profiling

Here, we validate the dynamic microservices profiling pro-
cess of MALB and investigate relevant design choices and
configurations. Due to the dynamic nature of 5G and beyond
services, MALB estimates, for each forthcoming time-instance
of the monitoring period, which is 3 sec in our case, the
CPU, memory and network utilization of each microservice.
This process defines the weight values of MALB algorithm,
enabling microservice-aware load balancing. In practice, we

evaluate the accuracy of RM and ARMA with different
window sizes, in terms of producing efficient weight values.

Here, we describe a Microservices Profiling example in
which the average utilization values of CPU, memory and
network in the full duration of an experiment with 1 video
streaming request every 2 seconds are 0.51, 19.26, 22.87,
respectively. According to these metrics, the average calculated
weights a, 3, and « of the profiling process are 0.012, 0.452
and 0.536. Indicatively, v value 0.536 reflects the importance
of network (22.87) in the total normalized resource allocation
0.51+19.26+22.87. This means that this microservice mainly
requires network resources. The idea of our dynamic profiling
feature is to carry out a similar process at each time-instance,
while considering predicted resource allocations, instead of
measured.

Next, we conducted experiments with separate deployments
of (i) the three considered microservice types; (ii) microser-
vices profiling with both RM and ARMA having window sizes
of 2, 5, 10 and 20, 50, 100, respectively (since the dataset is
non-stationary, we avoided using very large window sizes);
and (ii) the gradual increasing, stable and gradual decreasing
user patterns, i.e., linearly increasing from 1 to 3 requests/sec,
having 3 requests/sec, and linearly decreasing from 3 to 1
request/sec, respectively.

According to our results based on Mean Squared Error
(MSE) measurements, both RM and ARMA exhibit a descent
accuracy (i.e., with MSE ranging most of the times between
0 and 8), while being especially accurate with under-utilized
resources. This can be justified by the single-purpose func-
tionality of microservices, i.e., they have a more expectable
resource utilization, in contrast to monolithic applications.
Smaller window sizes seem to favor RM, while larger ones
ARMA. However, it is more challenging to predict CPU and
network utilization, characterized by a number of short-term
peaks, especially for ARMA with its linear properties. For
example, CPU peaks are more frequent with the stable number
of clients, since such run utilizes more clients on average,
i.e., a higher mean value produces a lower variance, causing a
high MSE in the case of back-end service and CPU utilization
metric. RM with window 2 either achieves the best accuracy
or it is marginally outperformed. This is expected, since it
follows the short-term dynamics of the resources.

For simplicity, we selected to use Rolling Mean with
window size 10 in our experiments, balancing its accuracy
with a smoothness level that follows the average behavior of
the system. Such strategy appeared effective in our results,
which could be further improved with a more accurate relevant
prediction mechanism, ideally considering both mean and
variance aspects.

B. Scenario 2: MALB Platform Evaluation

In this scenario, we assess resource-allocation efficiency
and impact on service performance of MALB in contrast to
the Simple Round Robin (SRR) and Least Network Load (LN)
strategies, both being widely used in SDN environments and
microservice management platforms, such as Kubernetes.

Our goal here is to evaluate the impact of MALB from
both provider’s (i.e., in terms of server and network resource

TABLE II: Load balancing level among the servers

SRR

LN MALB

Metric CPU Memory Network Energy

CPU Memory Network Energy

CPU Memory Network Energy

STDEV
Range

17.3 2.1 9.3 27.1
44.2 52 23.6 70.1

15.0
38.4

2.0
5.1

9.45
24.3

24.7
62.8

11.2
29.2

1.9 10.1
5.1 25.1

18.3
47.7

utilization as well as energy efficiency) and clients’ side (i.e.,
in terms of request response time, throughput and fairness).
Our SDN environment stress tests above mechanisms with the
communication of clients with four servers, each one of them
hosting all considered microservices. All provided figures and
tables illustrate the average values between 10 runs. We did
not have significant deviations among the runs, e.g., standard
deviation ranged between 0.03 and 0.47, for the average
measurements of CPU, memory and network resources.

Here, we emulated: (i) light (i.e., IMB) and medium-sized
(i.e., 10MB) file requests, for the user-interaction microser-
vices; (ii) medium (i.e., 10 sec flow size, 15% of CPU)
and heavy-sized (i.e., 30 sec flow size, 30-35% of CPU)
communication, for the back-end microservices; and (iii) a live
video broadcasting, i.e., without a specific flow duration, for
the video streaming. The clients to all above microservices are
being deployed, according to the assumed on-line game event.

We estimated the total energy consumption of each server
using the non-linear model for CPU introduced in paper [15],
as well as a simple linear equation for memory and network
(i.e., ranging for both between a baseline and a maximum
power consumed). Regarding the non-linear model, we used
the coefficient (calibration parameter) » = 1.4. We have also
considered 160W, 36W, 12W, 25W, 25W, and 10W as
the maximum power drawn (Py,s,) of CPU (4 processors),
Memory (4 DIMMs), disk, pci slots, motherboard and fan,
respectively. The baseline power (i.e., Pygseline) Was defined
as the 40% of Py, for all types of resources.

Table II enlists the average of all standard deviations
(STDEV) and ranges (i.e., max - min) among the four servers,
for each timestamp, i.e., quantifying their load balancing level.
We observe that MALB demonstrates a significant higher load
balancing level, compared to the other two approaches, of the
CPU resources (e.g., 34%, and 24% lower Range than LN and
SRR, respectively) and almost equally to the lower Range of
LN for memory and network. Since CPU is the most energy-
consuming resource, MALB also appears energy efficient (e.g.,
32%, and 24% lower range than LN and SRR, respectively).
This result highlights the performance advantages of MALB
in terms of load balancing, due to its centralized view of
resources and resource-demands of microservices.

In Fig. 3, we illustrate the mechanisms’ performance in
terms of average and worst-case resource consumption of CPU
and network resources, over all servers and at the full duration
of experiments. We quantify the worst-case resource consump-
tion as the average of the 30 higher values of the particular
metric, i.e., corresponding to the 3% of total measurements.
The green bar represents the average of the worst cases among
all servers and the purple one the equivalent metric of the most
overloaded server. We also denote an elasticity threshold, when
one of the metrics exceeds the value 70%.

Although all mechanisms exhibit a similar performance

©
5]

®
=]
2]
=]
8

75

f

7273

2

2
]

2

60 60

=)

53

CONSUMPTION
BN oW oA oW
© © © ©

1 16 15

o

SRR LN

CPU

MALB SRR N MALB

Network

[Average 30 Worst - Average I 30 Worst - Overloaded server

Fig. 3: MALB Provider-Side Evaluation

in terms of average consumption of CPU and network, i.e.,
attributed to the under-stressed cloud resources, there are cases
of high CPU utilization for both SRR and LN, triggering
elasticity events that could be avoided with a better balancing
of resources. For example, the worst CPU allocation of MALB
is 16.9% lower than those of SRR. Also, in the case of MALB,
the overloaded server metrics are close to the average worst
cases, highlighting the fairness achieved in the load balancing
among the servers.

Table III illustrates our evaluation results from the clients’
point of view. It enlists the type of microservices (Microser-
vice Type), the total number of requests (Requests) for each
particular run, as well as the considered metric (Metric) and
the corresponding values. We document Requests’ Completion
Time (RT, ms) for all microservice types, besides video that
does not have a fixed execution time. The performance of
the latter is measured in terms of application Throughput (TP,
kB/sec). We enlist the average and standard deviation of each
corresponding metric over the indicated number of requests.
Consequently, the latter metric is an indication of the fairness
level among the microservices of the same type.

In general, Table III results verify the observations of Fig. 3
and Table II, showing that efficient load balancing affects the
performance of services. On the one hand, we observe from
the average measurements that, MALB achieves the best RT
performance of both short-flow and long-flow requests e.g., in
the case of user-interaction medium requests workload, MALB
completes requests 107 ms and 109 ms sooner than SRR and
LN, respectively. This also underlines that microservice-level
adaptability of MALB is an effective strategy. Regarding video
streaming microservices, LN slightly outperforms MALB in
terms of throughput (e.g., 51 kB/sec), since it is a bandwidth-
intensive application. This outcome could be improved with a
more accurate prediction mechanism for network utilization.

On the other hand, the STDEV measurements reveal sig-
nificant advantages of MALB in terms of microservice perfor-

TABLE III: MALB Client-Side Evaluation

[Microservice Type | Requests | Metric [SRR AVG | LN AVG [MALB AVG | SRR STDEV [LN STDEV | MALB STDEV |

User Int. Light 1600 RT 448 460 429 313 256 201
User Int. Medium 1500 RT 1175 1177 1068 552 493 336
Back-end Medium 900 RT 10226 10224 10224 198 125 89
Back-end Heavy 550 RT 30232 30230 30223 142 118 86
Video Stream 650 TP 1560 1818 1767 36 40 43

mance fluctuation and fair operation among the microservices REFERENCES

of the same type, aspects being crucial for 5G and beyond ser-
vices. MALB achieves up to 55% and 31% STDEV reduction
contrasted to SRR and LN, respectively.

Our results can be summarized as follows. MALB improves
resource utilization and application performance for the con-
sidered resource-organized microservices. We also confirm
main MALB design directions: (i) to incorporate a simple
load balancing policy, such as SRR, for services generating
short flows; and (ii) to handle long flows with dynamic load
balancing equipped with online resource monitoring of both
network and compute resources, as well as adaptability to the
particular resource-demands of each microservice type, driven
by dynamic microservice profiling.

V. CONCLUSIONS

This paper presented MALB, a novel SDN-based load
balancing facility that focuses on a special case of 5G and
beyond services, i.e., services consisting of microservices with
heterogeneous, but simpler resource-demands compared to
the service they constitute. MALB adapts its load balancing
process to the particular requirements of microservices, based
on dynamic microservice profiling. Our experimental results
revealed the significant performance advantages of MALB,
in terms of resource utilization of cloud environment as
well as the response times, application-layer throughput and
fairness of the microservices, further supporting the significant
radio performance and capacity advantages of 5G and beyond
ecosystems. In the evolution of this work, we consider the
study of challenging network services and sophisticated pro-
filing mechanisms in the context of Open RAN.

ACKNOWLEDGMENT

The paper is supported by the "GSRI FUNDING FOR THE
YEAR 2019 (Award for the participation in competitive E.U.
projects)”, Novel Enablers for Cloud Slicing - NECOS,GA No
777067, HORIZON 2020 - JOINT ACTION EU - BRAZIL,
H2020-EUB-2017, Ministry of Development and Investments
— General Secretariat for Research and Innovation. It is also
co-funded by Greece and the European Union (European So-
cial Fund-ESF) through the Operational Programme “Human
Resources Development, Education and Lifelong Learning” in
the context of action “Enhancing Human Resources Research
Potential by undertaking a Doctoral Research”, sub-action 2:
”IKY Scholarship Programme for PhD candidates in Greek
Universities”.

[

—

J. F. Santos et al., “Breaking Down Network Slicing: Hierarchical
Orchestration of End-to-End Networks.”, IEEE COMMAG, vol. 58, no.
10, pp. 16-22, 2020.

[2] A. Garcia-Saavedra, and X. Costa-Perez, "O-RAN: Disrupting the vir-
tualized RAN ecosystem.” IEEE Communications Standards Magazine,
2021.

[3] A. R. Curtis, W. Kim, and P. Yalagandula, "Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection.”,
IEEE INFOCOM, IEEE, 2011.

[4] S. Wang et al., "FDALB: Flow distribution aware load balancing for
datacenter networks.”, IEEE/ACM IWQoS, IEEE, 2016.

[5] M. Al-Fares et al., "Hedera: dynamic flow scheduling for data center
networks.”, NSDI, vol. 10, no. 8, pp. 89-92, 2010.

[6] Q. Du, and H. Zhuang, ”OpenFlow-based dynamic server cluster load
balancing with measurement support.”, Journal of Communications, vol.
10, no. 8, pp. 16-21, 2015.

[7]1 D. Kliazovich et al., "e-STAB: Energy-efficient scheduling for cloud
computing applications with traffic load balancing.”, IEEE/ACM Green-
Com, IEEE, 2013.

[8] Y. Niu, F. Liu, and Z. Li, ”Load balancing across microservices.”, IEEE
INFOCOM, IEEE, 2018.

[9] R. Yu et al., "Load balancing for interdependent IoT microservices.”,

IEEE INFOCOM, 1IEEE, 2019.

S. Clayman, A. Galis, and L. Mamatas, "Monitoring virtual networks

with lattice”, IEEE/IFIP NOMS, IEEE, 2010.

[11] M. Elbamby et al. "Toward low-latency and ultra-reliable virtual real-

ity.”, IEEE Network, vol. 32, no. 2, pp. 78-84, 2018.

[12] M. Giordani et al., "Toward 6G networks: Use cases and technologies.”,

IEEE COMMAG, vol. 58, no. 3, pp. 55-61, 2020.

“Containernet.” [Online]. Available: https://containernet.github.io/.

“Floodlight Controller - Project Floodlight.” [Online]. Available:

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview.

[15] X. Fan, W.D. Weber, and L.A. Barroso. "Power provisioning for

a warehouse-sized computer.” ACM SIGARCH computer architecture

news, 35(2), 13-23, 2007.

[10]

[13]
[14]

Sarantis Kalafatidis pursues his Ph.D. at the University of Macedonia,
Greece, in the areas of Software-Defined Networking and Cloud Computing.
He holds a MSc Degree in Applied Informatics from the same University.
He investigates the research problems of efficient resource allocation and
load balancing for 5G and beyond networks in both data center and Smart-
City network environments. He participates in various international research
projects, such as NECOS (H2020) and FED4FIRE+ OC9 (H2020).

Lefteris Mamatas is an Associate Professor at the Department of Applied In-
formatics, University of Macedonia, Greece. He leads the Softwarized & Wire-
less Networks Research Group (http://swn.uom.gr) in the same University. His
research interests lie in the areas of Software-Defined Networks, Internet of
Things, 5G Networks, and Multi-Access Edge Computing. He participated in
many international research projects, such as NECOS (H2020), FED4FIRE+
OC4 (H2020), WiSHFUL OC2 (H2020), MONROE OC2 (H2020), Dolfin
(FP7), UniverSELF (FP7), and Extending Internet into Space (ESA). He has
published more than 80 papers in international journals and conferences.

