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ABSTRACT While the literature on channel state information (CSI)-based authentication and key distil-
lation is vast, the two topics have customarily been studied separately. This paper proposes unsupervised
learning techniques to disentangle deterministic from stochastic fading to decompose observed CSI vectors
into ‘‘predictable’’ and ‘‘unpredictable’’ components. The former, primarily due to large-scale fading, can
be used for node authentication. The latter, primarily due to small-scale fading, can be used for secret key
generation (SKG). The parameterization of the decomposition is performed using the following metrics:
1) CSI fingerprint ‘‘separability’’ criterion, expressed through the maximisation of the total variation distance
(TVD) between the empirical CSI fingerprints; 2) statistical independencemetric for CSI collected at different
users in neighboring locations, using the d-dimensional Hilbert Schmidt independence criterion (dHSIC) test
statistic; and 3) estimation of information leakage at different users to determine the amount of necessary
hashing for privacy amplification in the SKG using the FBLAEU machine learning based conditional
min-entropy estimator. Employing principal component analysis (PCA), kernel PCA and autoencoders on
synthetic and natural CSI datasets, this work shows that explicit security guarantees can be provided by using
physical layer security for authentication and key agreement.

INDEX TERMS Physical layer security, authentication, principal component analysis (PCA), machine
learning (ML).

I. INTRODUCTION

S IXTH generations (6G) systems will be required to
meet diverse constraints in an integrated ground-air-

space global network. In particular, meeting overly aggressive
latency constraints and operating in massive connectiv-
ity regimes with low energy footprint and low computa-
tional effort while providing explicit security guarantees can
be challenging [1]. In addition, the extensive introduction
of artificial intelligence (AI) and machine learning (ML)
and the rapid advances in quantum computing are further

developments that will increase the attack surface of 6G
systems [2], [3]. More importantly, the massive deployment
of low-end Internet of things (IoT) nodes [4], often produced
following non-homogeneous production processes and with
expected lifespans exceeding 10 years, poses pressing ques-
tions concerning future security architectures.

At the same time, the integration of communications and
sensing, along with embedded (on-device) AI, can pro-
vide the foundations for building autonomous and adaptive
security controls, orchestrated by a vertical security plane
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in coordination with a vertical semantic plane, dubbed as
context-aware smart security [5], [6]. It is in this frame-
work that we envision the incorporation of physical layer
security (PLS) schemes in 6G security protocols, introducing
security controls at all layers for the first time [7]. This excit-
ing prospect does not come, however, without challenges.
Despite intense research interest in PLS for more than two
decades, its incorporation in actual security products remains
largely elusive. A key reason behind this is that PLS relies
on the physical aspects of the transmission [8] rather than
mathematical algorithms. This limitation will be overcome
in 6G as channel engineering will be widely used to meet
communication needs and enable PLS.

In this direction, we propose in this work smart
pre-processing algorithms of observed channel state informa-
tion (CSI) vectors for CSI-based authentication and secret
key generation (SKG). We aim to separate the authentica-
tion signatures (CSI fingerprints) from reciprocal random
components that can be used for SKG. Despite the immense
bibliography on CSI-based authentication and SKG, a sys-
tematic treatment of the CSI as jointly a source of uniqueness
(deterministic fading) and entropy (stochastic fading) is miss-
ing. Therefore, this paper aims at filling this gap and building
pre-processing for joint SKG and authentication.

A. UNSUPERVISED LEARNING BASED
PRE-PROCESSING
Overall, our approach leverages unsupervised learning in the
form of dimensionality reduction as a generic tool to trans-
form CSI measurements with dependencies across different
dimensions (time, frequency, space, antenna) into i) loca-
tion dependent components and ii) random components that
decorrelate over very short-distances.

The proposed pre-processing is based on the observation
that large-scale fading, which is determined by path-loss
and shadowing, is location-dependent and can be useful for
authentication purposes [9]. On the other hand, small-scale
fading is stochastic in nature and can constitute an entropy
source for SKG, e.g., see [10] and [11]. To disentangle these
two processes we employ unsupervised learning techniques,
namely principal component analysis (PCA), kernel PCA
(KPCA), and autoencoders (AEs). Our aim is to perform a
power-domain decomposition (large versus small scale) of
the CSI into deterministic and stochastic fading. The goal is to
retrieve from the observed CSI: a predictable (deterministic)
component primarily due to large-scale fading, and an unpre-
dictable (stochastic) component primarily due to small-scale
fading.

The proposed decomposition is designed to satisfy three
criteria: (i) maximum separability of CSI-based authenti-
cation fingerprints, measured by the total variation dis-
tance (TVD) between empirical measures; (ii) minimum
dependence between the sources of shared randomness
at different nodes, measured by a normalized version of
the d-dimensional Hilbert Schmidt independence criterion

(dHSIC) [12] test statistic; (iii) minimization of the condi-
tional min entropy (information leakage) at different users
in neighbouring locations, measured using the FBLAEU
estimator [13]. We validate our proposed pre-processing
approach using both synthetic datasets generated by the
Quadriga models [14] and experimentally measured outdoor
CSI datasets from Nokia [15] for a massive multiple input
multiple output (mMIMO) setting.

B. CONTRIBUTIONS
The main contributions of this paper are:

1) Unsupervised ML-based pre-processing schemes:
We propose pre-processing schemes based on PCA,
KPCA, and two different AEs to disentangle the pre-
dictable components from the unpredictable compo-
nents in the CSI.

2) Maximum separability criterion of CSI fingerprints
for authentication: The paper uses the TVD to study
the separability of the components used for node-
authentication. This contribution provides insights into
the effectiveness of the proposed approach for authen-
tication based on the nearest neighbour classifier.

3) Study of spatial correlation and reciprocity
trade-off for SKG: We investigate the trade-off
between spatial correlations (SC) and dependencies at
different locations and reciprocity between the uplink
and downlink for SKG. We evaluate the degree of
spatial dependence using a novel metric, referred to as
normalized dHSIC.

4) Information leakage estimation: A conditional
min-entropy estimator is used to evaluate the necessary
hashing rate (privacy amplification) for SKG. Finally,
the quality of the SKG keys is validated using the
National Institute of Standards and Technology (NIST)
test suite.

5) Full SKG chain presented: In SKG literature it is
common to describe but not implement the privacy
amplification stage. In this work, we present the full
SKG chain and discuss trade-offs in terms of key
rate and information reconciliation rate as well as the
impact of different pre-processing schemes.

Overall, the contributions made in this paper provide a sys-
tematic treatment of the CSI as jointly a source of uniqueness
and a source of entropy. The proposed ML pre-processing
schemes, evaluation of spatial independence, study of ran-
domness, and assessment of spatial uniqueness provide a
fresh perspective on joint SKG and authentication using CSI
data.

The rest of the paper is organized as follows. Sec-
tions II and III review the background concepts for CSI-
based authentication and SKG and introduce the metrics
proposed as design criteria. Section IV presents the proposed
approaches for disentangling predictable CSI components
from unpredictable ones using PCA,KPCA, and two different
AEs. Section V presents the datasets and section VI includes
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numerical results. Section VII presents the discussion and
concluding remarks.

II. CSI-BASED NODE AUTHENTICATION
This section provides an overview of CSI-based node authen-
tication and its underlying principles, including the proposed
metrics for pre-processing.

A. PROCESS AND PRINCIPLE
CSI-based authentication is a technique used to verify the
identity of a device. The process involves the following steps:

1) The device collects CSI information, which is a set of
measurements that describe the state of the wireless
channel.

2) The device either processes the information locally
or sends it to the authentication server, which can be
located in the cloud, edge or on a local network.

3) The CSI information is used to determine the authen-
ticity of the device by comparing it with a reference
database of known and trusted CSI patterns.

4) If the CSI information is consistent with that of a known
and trusted device, the authentication server grants
access to the wireless network. Otherwise, access is
denied.

Therefore, authentication requires a verifiable source of
uniqueness, related, for example, to node positioning and
fingerprinting. A promising use case concerns the identifi-
cation of false base stations, leveraging public knowledge
of genuine base stations locations. Early results on using
azimuth and elevation angles of arrival as location features
in mMIMO settings have been shown to provide resistance
against location spoofing.

In all cases, the CSI fingerprints used for authentication
must be statistically separable for each location. Also, it is
beneficial if the fingerprints vary only slowly [16]. Various
approaches to exploit different types of channel parameters
for CSI-based authentication have been proposed in the liter-
ature [17], [18], [19]. In this work we propose pre-processing
techniques to enhance the statistical separability of CSI-
fingerprints, validated via a comparison of performance
achieved without the pre-processing.

B. METRICS
One of the key contributions of our work is to introduce a new
design criterion for pre-processing to extract highly separable
fingerprints from CSI vectors. Specifically, we propose using
a probability distribution distance metric as the cost function
for tuning the parameters of the pre-processing step. The goal
is tomaximize the separability between fingerprints of nearby
nodes, in order to improve the accuracy of authentication.

We utilize the TVD metric to evaluate the separability of
CSI-based authentication fingerprints. TVD is a well-known
distance measure between two probability distributions and
measures the L1 distance between their empirical measures.
Definition 1: Let µ and ν be two Borel probability mea-

sures on a metric space X , then the TVD between µ and ν is

defined as follows [20]:

TVD(µ, ν) = sup
A⊂X

|µ(A) − ν(A)| ,

where the supremum is over Borel-measurable sets. For two
probability distributions µ and ν defined on a countable
configuration space XN , the TVD is defined as:

TVD(µ, ν) =
1
2

∑
x∈XN

|µ(x) − ν(x)| .

The TVD serves as a distance metric to measure the
separability of the extracted fingerprints for authentication
purposes. It calculates the L1 distance between two prob-
ability distributions by summing the absolute differences
between their probabilities at each possible configuration in
the space. The greater the TVD, the more distinguishable the
two distributions and the more reliable the extracted finger-
prints for authentication. Conversely, if the TVD is small, the
two distributions are similar and the extracted fingerprints are
less reliable.

We note in passing that it is possible to build an
attack-resilient profile by utilizing various techniques to
identify spoofing attacks, such as clustering analysis of the
extracted fingerprints, as proposed in [21]. Additionally, the
correlation between any two adjacent CSI measurements
within a specific time window can be taken into account for
user authentication [21]. Such aspects are outside the scope
of this work and will be considered in future studies.

III. BACKGROUND CONCEPTS ON SKG
In the following we review background concepts on the SKG
protocol and provide a brief commentary on how it relates
to cryptographic schemes for key generation and related
metrics.

A. PROCESS AND PRINCIPLE
The SKG protocol comprises three steps, explained below:

1) Advantage distillation: In this step, the users use pilot
signals transmitted over the coherence time to excite
the channel, in order to obtain highly correlated obser-
vation sequences at two remote nodes, referred to as
Alice and Bob. These analog measurements are then
converted into binary sequences using quantization.

2) Information reconciliation: This step is used to detect
and correct discrepancies in the quantizer outputs at the
legitimate parties.

3) Privacy Amplification: In this step, the legitimate users
use hashing to generate a maximum entropy unpre-
dictable secret key. The hashing rate is determined by
the estimation of the conditional min entropy, account-
ing for observations at potential eavesdroppers.

To generate secret keys from wireless fading coefficients,
three factors are exploited: (i) the channel reciprocity between
two nodes, Alice and Bob, during the channel’s coherence
time; (ii) temporal variation due to node mobility and dynam-
ics [22]; and (iii) spatial independence (typically measured
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through decorrelation) at distances of the same order of mag-
nitude as thewavelength, i.e., in the order of a few centimetres
for sub-6GHz systems. In more detail, according to Jakes’
model, the channel will be uncorrelated when a third party is
located half a wavelength away [23]. However, experimental
results show that half-wavelength distance spatial decorrela-
tion is valid only in very rich scattering environments [24],
[25], [26], [27].

Additionally, the keys need to be generated from stochastic
fading components to be unpredictable; attacks on SKG from
deterministic fading have been launched using ray-tracing
and have been successfully demonstrated experimentally
[28]. Despite this, many existing works perform SKGwithout
systematically removing predictable components of wireless
channel coefficients [29], [30], [31] and without explicitly
accounting for them in the privacy amplification step, which
is customarily omitted in published work.

In this paper, we focus on minimizing SC and depen-
dencies at potential attackers, referred to as Eves, in the
vicinity of legitimate users, explicitly as a design criterion
in the pre-processing stage. Without any pre-processing of
the observed CSI, an attacker can distil highly correlated
observations with these at the legitimate nodes due to deter-
ministic fading. Although these dependencies can be removed
through privacy amplification, this approach requires the
use of i) larger quantizers; and ii) heavier hashing, leading
to less energy-efficient solutions and potentially erroneous
implementations.1

Remark: The proposed CSI pre-processing offers the
advantage of linking SKG to the concept of a cryptographic
pseudorandom number generator (PRG) during the advan-
tage distillation phase. In more detail, with respect to a PRG,
we refer to the following standard definition of pseudoran-
domness in cryptography [32]:
Definition 2: The ensemble {G(Un)}n∈N is pseudorandom,

iff for any probabilistic polynomial-time algorithm A, for any
positive polynomial p, and for all sufficiently large n,

|Pr(A(G(Un); 1l(n)) = 1) − Pr(A(Ul(n); 1l(n)) = 1)| <
1
p(n)

.

Here, the probabilistic polynomial-time algorithm A can
be seen as a statistical test, and a generator G fails the test
if an algorithm A exists such that the above condition does
not hold. In cryptography, a semantically secure PRG has
the property of ‘‘unpredictability’’ (resistance to next bit
predictors), which means that an observer who knows i bits
of the output of the PRG should be unable to predict the
(i+ 1)-th bit with a probability that is greater than 1

2 by more
than a negligible quantity that increases only polynomially in
time 1

p(n) . With respect to SKG, independence between the
observations of the legitimate users and the observations of

1It should be noted that any correlations in the time, frequency, space,
or antenna domains between the reconciled sequences at Alice, Bob, and
potential Eves should be explicitly taken into account when evaluating the
conditional min-entropy to estimate the target privacy amplification rate.

Eve ensures unpredictability as independence is a stronger
condition.

B. METRICS
Although various polynomial time statistical tests of unpre-
dictability have been proposed, such as the ones in the NIST
suite [33], these tests were designed to asses the randomness
of a single sequence generated by a PRG. As a result, they are
not equipped to evaluate dependencies and cross-correlations
of sequences observed at legitimate and adversarial nodes in
close proximity in the context of SKG. In order to address
this issue, in this work we make use of four metrics of
increasing statistical accuracy in capturing dependencies,
and correspondingly of increasing computational complexity.
Namely, in this work we evaluate i) the mismatch proba-
bility (MP) between observed sequences assuming a one-
bit quantizer; ii) the Pearson cross-correlation coefficient;
iii) a novel metric for measuring dependencies, referred to
as dHSIC; and finally, iv) the conditional min-entropy of the
observed sequences. The metrics are discussed in detail in the
following.

1) MISMATCH PROBABILITY
It is important to balance the reduction of dependencies
between legitimate and adversarial observed sequences dur-
ing pre-processing with preserving the reciprocity between
the observed sequences at Alice and Bob. To assess reci-
procity, we use a one-bit quantizer about the median point
along the time dimension on the CSI sequences observed
in the uplink (Alice to Bob) and downlink (Bob to Alice).
The mismatch probability (MP) between Alice and Bob is
defined as the ratio of the number of bits in disagreement
to the total number of bits. These mismatches are subse-
quently corrected during the information reconciliation step,
but a high MP requires a lower rate reconciliation decoder to
ensure zero frame-error-rate (FER) reconciliation,2 i.e., key-
disagreement-free SKG, which becomes impractical for short
blocklengths beyond a certain point.

2) PEARSON CROSS-CORRELATION COEFFICIENT
One widely used metric for measuring the degree of correla-
tion between two variables is the Pearson cross-correlation
coefficient (CC), which has been applied in the literature
as an indirect measure of unpredictability in the context of
PLS. However, we note that decorrelation alone may not
be sufficient to prove unpredictability, in the case of non-
linear dependencies and non-Gaussian distributions. Instead,
the independence of observations between legitimate and
adversarial entities is a stronger criterion that guarantees
unpredictability and allows the design of SKG to align with
the definition of a PRG at the advantage distillation step.

2A frame refers to a code block, and the frame error rate represents the
likelihood or frequency of errors occurring within a single block.
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3) DHSIC
We propose to use the dHSIC [12] to measure dependen-
cies between the observed CSI vectors. The dHSIC is a
kernel-based statistical test of independence that applies a
positive-definite kernel on N -dimensional random variables
(RVs) to determine whether the dimensions are independent.
The null hypothesis indicates that the vectors are mutually
independent and their joint probability density function can
be expressed as the product of the marginals, while the alter-
native hypothesis denotes that the vectors consist of at least
two dependent components. An estimator of the statistical
functional is defined as dHSIC(H̃), which can be calculated
using the following equation [12, Def 2.6]:

dHSIC(H̃) =
1
M2

M∑
i,j=1

N∏
l=1

(
1M×M◦K l

ij

)
+

1
M2N

N∏
l=1

M∑
i,j=1

K l
ij

−
2

MN+1

M∑
i,j=1

N∏
l=1

(
1M×1 ◦ K l

ij

)
, (1)

where the operator ◦ denotes the Hadamard product and
1M×M is an M × M matrix of ones. Also, Kl

=

(
Kl
ij

)
=(

k l(xi, xj)
)

∈ RM×M is the Gram matrix of the positive semi-
definite Gaussian kernel k l , defined ∀xi, xj ∈ R by, k l =

exp
(

−
∥xi−xj∥

2

σ 2

)
, with bandwidth σ =

√
med

(
∥xi−xj∥

2
)

2 and

med(·) is the median heuristic.
According to [12, Theorem 3.1], with respect to the

hypothesis test at hand, the critical value (for a specific
significance level α) can be obtained as below,

CVα =

[
DdHSIC ′

]
⌈(B+1)(1−α)⌉+

∑B
i=1 1{dHSIC ′(H̃)=dHSIC ′(H̃ i)}

,

where the vector DdHSIC ′

contains the B Monte-Carlo reali-
sations of dHSIC ′(H̃) in an increasing order; the re-sampling
function dHSIC ′

(
H̃

)
, H̃ =

(
r1(h̃1), · · · , rN (h̃M )

)
is con-

structed by r1, · · · , rM random re-samplings without replace-
ment. The operators ⌈.⌉ and [.]j denote the ceiling function
and the j-th element of a vector respectively, and 1{·} is the
indicator function.

We propose a normalised metric for measuring the level
of dependence between variables, based on the dHSIC test
statistic and the corresponding critical value. The metric is
expressed as

1 =
dHSIC(H̃)

CVα

1dHSIC(H̃)>CVα
, (2)

where 1 is close to unity when the variables exhibit
low dependence and grows without bound with increasing
dependence.

4) CONDITIONAL MIN ENTROPY
The randomness of binary sequences is commonly evaluated
using the min-entropy metric [34], [35]. The min-entropy

measures the minimum number of binary strings that are
required to generate the observed sequence with high proba-
bility. Specifically, the min-entropy of a sequence r is defined
as G∞(r) = − log2maxr∈R p(r), where R is the set of all
possible values of r. In the context of key generation at the
output of a PRG, the key k should satisfy the randomness
inequality [36]:

|k| ≤ G∞(r). (3)

However, the min-entropy metric does not account for
any leakage to an eavesdropper and is therefore only suit-
able when no leakage is expected, such as when keys are
generated using a cryptographic PRG. In the case of SKG,
to evaluate the randomness of keys in the presence of an
eavesdropper, we use the conditionalmin-entropy [37], which
measures the minimum number of binary strings that are
required to generate the key k, given the eavesdropper’s
observations, i.e.,

G∞(r|rE ) = − log2 max
r∈R,rE∈RE

p(r|rE ), (4)

whereRE is the set of all possible observed sequences at the
eavesdropper. In fact, the difference between the min-entropy
and the conditional min-entropy represents the amount of
information leaked to the eavesdropper [38]:

Leakage = G∞(r) − G∞(r|rE ). (5)

The above metric provides a measure of the leakage and can
be used to determine if pre-processing improves the condi-
tional min-entropy and reduces leakage.

Finally, we also need to account for the additional leakage
that occurs during the information reconciliation phase due to
side information exchange. As a result, the length of the final
key can be upper-bounded as follows [39]:

|k| ≤ G∞(r|rE ) − |sA|, (6)

where |sA| denotes the length of the syndrome. It is worth
noting that (6) assumes a worst-case scenario where the side
information is independent of the leakage during advantage
distillation [39].

IV. PROPOSED POWER DOMAIN PRE-PROCESSING
As explained in earlier sections, we employ three different
techniques: PCA, KPCA, and AEs. PCA is a linear decompo-
sition that can effectively capture the dominant components
of the CSI. KPCA and AE, on the other hand, are capable of
capturing non-linear dependencies within the data. Fig. 1 pro-
vides a visual representation of our proposed pre-processing
techniques and their role in implementing authentication and
SKG using CSI matrices. This figure illustrates the flow of
the pre-processing steps, highlighting how the techniques
capture the desired components for authentication and SKG.
After the pre-processing stage, the predictable components
obtained can be appropriately used to train a classifier or
run a hypothesis test for authentication. The unpredictable
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components, on the other hand, are utilized in subsequent
steps of the SKGprocess, including quantization, information
reconciliation, and privacy amplification, to generate the
secret key. As discussed in previous sections, to evaluate
the statistical separability of CSI-based authentication fin-
gerprints, we use the TVD, while to evaluate the spatial
dependencies after quantization we incorporate four different
metrics (MP, CC, dHSIC and conditional-min entropy).

A. PRE-PROCESSING USING PCA
Let Hu = [h1u, · · · ,hNu] denote the observed CSI matrix
at Bob (aggregating the CSI vectors from all Alices) and
U the M × M matrix whose rows are the eigenvectors of
the matrix Cov(Hu), sorted in decreasing order. In many
scenarios, e.g., Rician and generally line of sight settings, it is
plausible to assume that the first few principal components
(PCs) correspond to the dominant large-scale fading terms,
while the rest of the PCs correspond to small scale fading
terms and noise. Using the eigenvectors D̂×M matrix U1:D̂
corresponding to the first D̂ PCs, we want to isolate the
predictable part of the observed channel that will be used for
CSI-based authentication, as follows,

Ĥu = UH
1:D̂Wu, (7)

where symbol .H denotes the Hermitian transpose and the
D̂× N matrixWu is given by,

Wu = U1:D̂Hu, (8)

and Ĥu =
[̂
h1u, · · · , ĥNu

]
for u ∈ {a, b} is a M × N

matrix. Furthermore, we want to identify a region of PCs with
indices {D̃1, . . . , D̃2}, corresponding to components H̃u =[
h̃1u, · · · , h̃Nu

]
for u ∈ {a, b} over which low dependence

and correlation between Alices and Eves is achieved while
keeping the MP below a threshold.

Note that the PCs beyond D̃2 + 1 are dominated by noise
and should be neglected (denoising). To efficiently disentan-
gle the CSI matrix into predictable and unpredictable parts,
the triplet {D̂, D̃1, D̃2} is chosen such that the TVD is max-
imized for the first D̂ PCs while 1, leakage and the MP
are kept as low as possible for the range {D̃1, . . . , D̃2}. We
discuss the trade-off between minimizing 1 (as a measure of
independence) and the MP in detail in Section VI.

B. PRE-PROCESSING USING KPCA
KPCA is a natural extension of PCA, that applies a kernel
function to map the data into a higher-dimensional space F
[40], allowing for capturing nonlinear characteristics of the
CSI matrix. Here, the eigenvalue problem is solved in the
feature space for the KPCA decomposition,

K̃α = Nλα, (9)

where αi =
Vi√
λi

, i = 1, . . . ,N , and, matrix V and
vector λ (λ ⩾ 0) denote the eigenvectors and the
eigenvalues, respectively. Also, K̃ is the centralized Gram

matrix, given by,

K̃ = K −
1
N
1N×NK −

1
N
K1N×N +

1
n2

1N×NK1N×N (10)

where the Gram matrix K ∈ CN ,N is based on the positive
semi-definite complex Gaussian kernel and 1N×N is anN×N
matrix of ones.

Then, the first D̂ nonlinear PCs could be extracted through
computing projections of the original data on the eigenvectors
Vi in feature space F, as above,

Y1:D̂ = αH1:D̂K̃. (11)

In order to estimate the predictable and the unpredictable
parts as before, we apply KPCA reconstruction; unlike in
PCA, this can not be done explicitly since φ is unknown.
Hence, we approximate the reconstruction matrix based on
the kernel ridge regression [41]. It follows that the predictable
part of the observed channel is computed as follows

Ĥu = βKY1:D̂ , β = Hu(KY1:D̂ + γ I)−1, (12)

where KY1:D̂ =
(
k(yi, yj)

)
is the complex Gaussian Gram

matrix of the first D̂ PCs and γ is the hyperparameter of the
ridge regression. Subsequently, we derive the unpredictable
part of the observed CSI directly as the residual of removing
the predictable part, i.e.,

H̃u = Hu − Ĥu, (13)

In the case of KPCA, unlike in PCA, denoising is not
performed.

C. PRE-PROCESSING USING AES
AEs are unsupervised learning architectures that utilise and
learn two functions, an encoder that maps theM dimensional
inputmatrix hnu into D̂ dimensional encoded valueswnu ∀n =

1, . . . ,N for u ∈ {a, b} and a decoder that maps the encoded
values back to anM dimensional output ĥnu, ∀ n = 1, . . . ,N
and for u ∈ {a, b}, such that the loss-function

E1 =
1
N

N∑
n=1

∥hnu − ĥnu∥22, for u ∈ {a, b}, (14)

corresponding to the mean square error (MSE) between the
AE input and output, isminimal. AnAE can be used to extrap-
olate a D̂-dimensional representation wnu, ∀ n = 1, . . . ,N
that can capture the dominant components. We treat the out-
put of the decoder ĥnu, ∀n = 1, . . . ,N , for u ∈ {a, b} as the
dominant predictable components under the conjecture that
most of the received signal strength is due to large scale fading
effects. Here again, we assume that the residuals{

h̃nu(D̂)
}N
n=1

= {hnu − ĥnu}Nn=1, for u ∈ {a, b} (15)

correspond to the unpredictable components of the CSI
matrix.

In light of this, the value of D̂ is a hyperparameter that
can be tuned to a more fine-grained loss function focusing
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FIGURE 1. Block diagram for proposed PLS-based authentication and secret key generation. The pre-processing
schemes disentangle the predictable components from the unpredictable components in the CSI. The predictable
components are used for authentication and the unpredictable components are used for secret key generation.

FIGURE 2. A representative block diagram of PCA.

FIGURE 3. A representative block diagram of AE1.

on SKG; in particular, we build an alternative loss function
to balance the spatial correlation with the reciprocity of the
residuals in the uplink and the downlink. Since we want to
lower correlation, the loss function can also explicitly specify
a correlation term instead of the MSE. Consequently, the
following loss function is proposed:

E2 =
1
N

N∑
n1=1

n2∈U (n1)

h̃
H
n1uh̃n2u, for u ∈ {a, b}, (16)

as the inner product of the residual at each location and that
from the neighbouring locations. Here, U(n1) is the nearest
neighbours of the n1-th Alice-Bob pair.

FIGURE 4. A representative block diagram of AE2.

V. DATASETS
To validate the proposed methodology, we perform exper-
iments on synthetic datasets using the Quadriga channel
simulator and real experimental datasets collected from
Nokia [15].

A. QUADRIGA SYNTHETIC DATASET
We considered single-antenna legitimate nodes, referred to
as Alices and a base station referred to as Bob; Alices’
spatial locations are denoted by {xn}Nn=1 n = 1, . . . ,N ,
where {xn}Nn=1 ∈ RL and L denotes the spatial dimensions
considered (typically L = 2). We obtain the channel response
at N = 400 equi-distant (1 m) spatial locations within a
square area on the ground, between x = 100 and x = 290 and
y = −100 and y = 90 and a base station located at (x, y, z) =

(0, 0, 10) using the ‘‘Berlin-UMa-NLOS’’ configuration in
Quadriga channel models [14], [42], as depicted in Fig. 5. We
assume that for any specific Alice, all other Alices can act as
attackers (Eves).

This configuration’s terrestrial Urban Macrocell parame-
ters are extracted from measurements in Berlin, Germany.
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FIGURE 5. Node positions in the quadriga synthetic dataset.

To create temporal variations in the channel, the Alices are
assumed to move at a low speed of 0.5 m/s. The number of
CSI snapshots per Alice is set to M = 256, while the carrier
frequency is set to 2.68 GHz.

Let the channel function mapping the spatial locations to
theM×1 CSI vectors {hn}Nn=1 be denoted byH : RL

→ RM ,
whereM is the number of snapshots in the time domain (after
concatenation of the real and imaginary components into a
single column vector). The CSI observations at Alice and Bob
after the exchange of pilot signals can be modelled as

ynu = hns+ nnu, n = 1, . . . ,N , u ∈ {a, b}, (17)

where the index a denotes an Alice, b denotes Bob; nna and
nnb are circularly symmetric Gaussian noise variables and the
pilot symbols s are drawn from the binary phase-shift keying
(BPSK) constellation [43]. The zero-force CSI estimates at
Alice and Bob, respectively, are denoted by hna = yna and
hnb = ynb for n = 1, . . . ,N .

B. NOKIA EXPERIMENTAL DATASET
Amassive multiple-input multiple-output (mMIMO) channel
measurement campaign was conducted on the Nokia campus
in Stuttgart, Germany. The campaign area consisted of mul-
tiple roads with high buildings (15 m high approximately),
acting as reflectors and blockers for the radio wave propaga-
tion. The transmit antenna array was placed on the roof-top
of one of these buildings. The geometry of 64-element
transmit-array was such that there were 4 rowswith 16 single-
polarization patch antennas, with a horizontal spacing of λ/2,
and vertical spacing of λ.
The transmit antenna array transmitted 64 time-frequency

orthogonal pilot signals at 2.18 GHz carrier frequency,
using orthogonal frequency division multiplexing (OFDM)
waveforms according to the 10 MHz LTE numerology
(i.e., 600 subcarriers with 15 kHz spacing). The pilot signals
have been arranged so that the sounding on 50 separate
subbands (each consisting of 12 consecutive subcarriers)
required 0.5 ms. Within that pilot burst period, the propa-
gation channel was assumed to be time-invariant. The pilot
bursts were sent continuously with a periodicity of 0.5 ms.

The receiver user equipment (UE) was mounted on a
mobile cart and consisted of a single monopole antenna
mounted at 1.5 m height, a Rohde and Schwarz TSMW
receiver and a Rohde and Schwarz IQR hard disc recorder,
which continuously captured the received base-band signal.
Both the transmit array and the receiver were frequency syn-
chronized via GPS. During the measurements, the receiver
cart moved along several routes at walking speed (3.6 kmph),
which corresponded to a spatial channel sampling distance
of less than 0.5 mm. Post-processing was used to extract, for
each pilot burst and subband, the 64-dimensional CSI vector.
In this work, we used datasets on tracks 6 and 12, depicted

in Fig. 6, that are parallel at a vertical distance of 1 m. In
detail, we assumed that Bob is the base station and Alice
walks along track-6, while Eve performs an ‘‘on the shoulder
attack’’ and walks in parallel to Alice on track-12, i.e., legit-
imate and adversarial nodes are at all times 1 m away. In
order to remove frequency domain (within the coherence
bandwidth) and antenna domain correlations, we have down-
sampled the dataset. In detail, we kept themeasurements from
every 10th subcarrier and every 4th antenna, i.e., we used sub-
sampling factors of 5 and 6, respectively.
Furthermore, as the Nokia dataset consists of only uplink

data, we used alternate consecutive measurements to approx-
imate downlink data and have further downsampled the data
in the time domain, keeping every 5th channel sample. In
detail, starting from sample index 1, we labeled odd index
samples as uplink and even indexed samples as downlink. As
a result, for eachAlice and Eve, we used CSI vectors of length
M = 800, concatenating real and imaginary parts.
It is worth noting that in practice uplink and downlink

channels can be non-reciprocal due to a multitude of fac-
tors, including but not limited to: i) different dimensions
of antenna arrays at Alice and Bob; ii) non linearities of
power amplifiers (AM/AM and AM/PM distortions), whose
characteristics are generally different in the UE and gNB;
iii) antenna imperfect calibration in UE and gNB; iv) digital
processing differences; v) Tx and Rx chains imbalances more
generally and more importantly vi) asynchronous transmis-
sions of the uplink and downlink in time division duplex
(TDD) systems. All of these aspects need to be systematically
investigated as they will impact the MP and by extension the
required reconciliation rate to achieve zero FER; however,
they are out of the scope this study and are left as future
possible extensions of the results presented in this paper.
Before presenting the details of the pre-processing, we dis-

cuss the statistical analysis of the two datasets.

C. ANALYSIS OF DATASETS
We fitted the empirical distributions of the amplitude and
the phase for the Quadriga and the Nokia datasets (tracks
6 and 12) to 16 parametric probability density functions
(PDFs). Table 1, summarizes the estimated PDFs’ parameters
of the amplitude resulting in the lowest Akaike’s infor-
mation criterion (AIC) values, along with the p-values of
the Kolmogorov-Smirnov (KS) goodness-of-fit test (the null
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FIGURE 6. Pictorial representation of the Nokia campus in Stuttgart, Germany, where the dataset was recorded. The blue
bar on the left side corresponds to the location of the massive MIMO transmit antenna, placed on a rooftop, while the
arrow points the antenna boresight. The black dashed lines depict the measurement tracks, along which the UE cart
moved. The tracks are numbered from 1 to 24; in this work we utilized the datasets of tracks 6 and 12, which are parallel
and at 1 m distance from each other [15].

FIGURE 7. Fitting of the underlying channel distribution of the
amplitude and the phase.

hypothesis being that the data follow the specified distribu-
tion). Also, Fig. 7, depict the fitted PDFs of the distributions
tabulated Table 1 on the amplitude (left column) and the fitted
PDF of the uniform distribution on the phase (right column),
for the Quadriga and NOKIA datasets.

TABLE 1. Estimated pdf parameters for the quadriga and the
nokia datasets.

According to the p-values of the KS test, the amplitude
of the Quadriga-based channel follows a Rician distribution,
while the phase follows a Uniform(−π, π) distribution (see
Fig. 7). However, the amplitude of Nokia’s track 6 CSIs is
bimodal (mixture distribution) and does not fit any of the
chosen distributions, as shown in Fig. 7 and confirmed by the
p-values of the KS test. On the other hand, for Nokia track 12,
the p-value of the Nakagami(1.52,0.0004) distribution
(p-value= 0.4) implies that the channel is likely to follow the
above distribution while the phase is uniformly distributed.
In conclusion, Table 1 and Fig. 7 indicate that real datasets
might not be well fitted to any of the usual distributions
customarily used for the evaluation of SKG rates in literature,
as is the case for track 6. In the future, we will consider
non-parametric analysis, mixture distributions and the use of
generative models for fitting real datasets.

VI. NUMERICAL RESULTS
In this section, we provide a comprehensive evaluation of the
proposed approaches using both synthetic and real datasets.
We first begin with results on maximising the separability
of CSI fingerprints. We analyze the variation of TVD with
respect to D̂. Since the results for CSI-based authentication
are similar for all proposed approaches, we present them
solely for the PCA for conciseness.
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FIGURE 8. TVD vs D̂.

FIGURE 9. Separability of 6 neighbours for the original signal
and the D̂ = 1 PC for SNR= 20 dB.

Subsequently, in the second half of the section, we turn
our attention to unpredictable components used for SKG. We
examine the reciprocity versus correlation trade-off of the
PCA, KPCA, and AE by analyzing two key metrics: the aver-
age CC between locations and their nearest neighbours, and
the average MP between Alice and Bob. To investigate this
trade-off, we plot the variations of these metrics as the pair
D̃1, D̃2 changes. Furthermore, we evaluate the randomness of
the generated keys using the normalized dHSIC test statistic
as well as conditional min entropy estimators. Finally, the var-
ious methods are compared in terms of overall key generation
rates.

A. CSI-BASED NODE AUTHENTICATION
In Fig. 8, for the Quadriga dataset, the average TVD between
the first D̂ PCs at any Alice and any of her neighbours is
depicted. We observe that D̂ = 1 results in the largest value
of TVD, while the point D̂ = 0 corresponds to the original
measurements. With an increase in the SNR, there is a slight
increase in the TVD; with a decrease in noise, the variance of
the first PCs increases, and hence the TVD decreases.

To showcase the impact of increasing TVD, in Fig. 9,
we show the variation of the amplitude of the original CSI vs.
time and that of the first PC vs. time for four neighbouring
Alices. We observe that when compared to the original signal

FIGURE 10. TVD vs D̂.

FIGURE 11. Original signals and first PC of 4 neighbouring Alices
in the Nokia dataset for SNR= 20 dB.

TABLE 2. Average
√
M-NN classification performance, in terms

of classification accuracy and f1-Score, for each 2 neighbouring
alices in the Quadriga dataset for SNR=20 dB for M = 256.

in Fig. 9(a), the time series corresponding to the first PC in
Fig. 9(b) are clearly distinguishable. Similar results are shown
for the Nokia dataset in Fig. 10 and 11, for which, notably, the
increase in the separability is more accentuated.

To provide a first validation of the proposed pre-
processing, we compare the performance of CSI authenti-
cation for the original signal, the first principal component
(representing large-scale fading), and the residuals (repre-
senting small-scale fading), using the NOKIA dataset. For
the evaluation, we employed a binary

√
M - nearest neighbour

(NN) classifier (based on the common Euclidean distance) to
distinguish between track 6 and track 12 [44]. We considered
several sample sizes M = {250, 500, 1000, 2000, 4000} and
utilized 70% of each dataset for training and 30% for testing.

The results in Fig. 12 clearly demonstrate the supe-
rior performance of CSI-based authentication using the
first PC (large-scale fading) compared to the original CSI
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FIGURE 12. Average a) accuracy and b) f1-score of the binary
√
M-NN classifier between track 6 and track 12 of the NOKIA

dataset, for the original signal, the first PC (predictable) and the
residuals (unpredictable).

and the small-scale fading.3 Specifically, for sample sizes
up to 1000, the large-scale fading provides an average
increase in classification accuracy and f1-score of around
6% and 15% compared to the original CSI and small-
scale fading. It is important to note that for larger sample
sizes (M = 2000, 4000), the classification performance gap
between the large-scale fading and the original channel is
lower (up to an average of 5%). This is because the

√
M -NN

classifier struggles to efficiently distinguish between tracks
6 and 12 due to their close proximity (1meter). However, even
at such larger sample sizes, the large-scale fading is superior
to small-scale fading in terms of accuracy and f1-score.

We also evaluated the performance of CSI-based authenti-
cation using the Quadriga dataset, following the same exper-
imental setup as before, with sample size M = 256 (total
number of snapshots per location). The results, presented in
Table 2, demonstrate that accuracy is significantly improved
when keeping only the first PC compared to the original CSI

3The use of stochastic fading for authentication is presented here to further
exemplify its unsuitability as an authentication feature.

FIGURE 13. Trade-off between CC and MP for SNR = 20 dB for
the Quadriga dataset. Darker colours indicate lower values.

and the small-scale fading. On average, when keeping only
the first PC leads to a 20% higher classification accuracy
and a 15% higher f1-score when distinguishing between two
neighbouring Alices. The table provides an overview of the
average

√
M -NN classification performance in terms of accu-

racy and f1-score for each pair of neighbooring Alices in the
Quadriga dataset at an SNR of 20 dB. The predictable compo-
nent achieves an accuracy of 0.793 and an f1-score of 0.7582,
outperforming the original channel (accuracy: 0.5629,
f1-score: 0.5901) and the unpredictable component (accu-
racy: 0.5752, f1-score: 0.5986).

B. SECRET KEY GENERATION
1) PCA
First, we study the effect of pre-processing using PCA for
SNR = 20 dB in Fig. 13, starting with the Quadriga dataset.
Figs. 13(a), and (b) illustrate the variation of two metrics:
i) the average CC between the locations and their nearest
neighbours; and ii) the average MP between the Alices and
Bob, respectively, with respect to the variation in the pair
{D̃1, D̃2} in steps of 2. With no pre-processing, the average
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FIGURE 14. Trade-off between CC and MP for SNR = 5 dB for the
Quadriga dataset.

CC is approximately 0.30. However, with a sufficient number
of dimensions D̃1 − D̃2 retained, an increase in the number
of dimensions omitted D̃1 −1 results in a decrease in the CC.
Specifically, for D̃1 = 2 and D̃2 = 20, we observe a drop in
the CC to 0.18, with no significant increase in MP.

We posit that this range of PCs captures sufficiently well
small scale fading terms. This regime is indicated as ‘‘Dom-
inance of uncorrelated components’’ in Fig. 13(a) while the
corresponding region is referred to as ‘‘Low Mismatch Prob-
ability’’ in Fig. 13(b). Note that the drop in CC is more
pronounced beyond D̃1 = 14, beyond which noise becomes
dominant, resulting in an increase of the MP. This regime is
referred to as ‘‘Dominance of Noise’’ in Fig. 13(a). The corre-
sponding region is marked as ‘‘High Mismatch Probability’’
in Fig. 13(b). In Fig. 14, the trade-off between CC and MP is
shown for SNR= 5 dB. As expected, with a decrease in SNR,
the effect of noise is more pronounced. Therefore, the regime
of noise dominance and highMP is seen even at D̃1 = 10. An
important conclusion of this analysis is that for low SNRs it
is possible to omit any pre-processing to avoid compromising
the MP.

A trend similar to CC is observed for 1 in Fig. 15, espe-
cially for higher values of D̃1 indicating likely independence.

FIGURE 15. Evolution of 1̄ with D̃1 for D̃2 = 30 for the Quadriga
dataset.

TABLE 3. KPCA results for the quadriga dataset, considering
SNR={5,20} dB. D̂ = 0 denotes no pre-rpocessing.

On the other hand, 1 for D̃1 < 8 does not follow the CC
drop, indicating the limitations of CC compared to 1 to
capture dependence. For example, omitting the first 6 PCs
may guarantee a low CC but not a significant decrease in 1

and statistical independence. The impact of the observation
vector length on 1 will be investigated in detail in future
work.

Next, we present results for the Nokia dataset starting
with SNR = 20 dB in Fig. 16. With no pre-processing, the
average CC is approximately 0.38. However, with a sufficient
number of dimensions retained, an increase in the number
of dimensions omitted decreases the CC. Specifically, for
D̃1 = 6 and D̃2 = 30, we observe a drop in the CC to
0.15, with no significant increase in MP. As in the Quadriga
dataset, we posit that this is the regime in which the predomi-
nant large scale predictable components have been removed,
and the small scale fading components have been retained.
Importantly, a trend similar to CC is observed in the average
1 in Fig. 17, especially for D̃1 ≥ 4 after which value the
dependence level collapses. Finally, similarly toQuadriga, for
a low SNR=5 dB, any pre-processing would induce high MP
and is therefore advised to be omitted.

2) KPCA
Next, we evaluate the performance of KPCA. Recall that,
in this case, we only apply the parameter D̂ to derive the
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FIGURE 16. Trade-off between CC and MP for SNR = 20 dB for
the Nokia dataset.

FIGURE 17. Evolution of 1 with D̃1 for D̃2 = 30 for the Nokia
dataset.

residuals that will be used as SKG seeds. Tables 3 and 4
indicate that an increase in D̂ leads to lower values of 1 and
higher values of MP. More precisely, focusing on Table 3,

TABLE 4. KPCA results for the NOKIA dataset, considering
SNR={5,20} dB.

TABLE 5. The layers and activation function for AE1. For AE2 the
only change is that the dimensions of the input and the output
layers are 400.

1 undergoes a significant decrease for D̂ ⩾ 2, leading to a
slight increase in MP. Moreover, comparing the outcomes of
the PCA and the KPCA, KPCA seems to lead to a ‘‘faster’’
decrease of 1. The results provided in Table 4 concern the
NOKIA dataset and similarly show a significant decrease
in 1; overall, compared to PCA, KPCA seems slightly more
efficient in decreasing dependencies.

3) AE
The layers and the activation function of the AE are given
in Table 5 and follow [45]. For brevity, the AE with MSE
loss function is referred to as AE1 and that with dot-product
loss function is referred to as AE2. The input to the AE2 is
formed by grouping the 200 × 1 CSI vector (100 real and
100 imaginary) of each spatial location with 200 × 1 long
CSI vector from each of the 8 nearest neighbours surrounding
the location. In other words, the dimension at the input and
the output is 400 × 1. This ensures that the loss function can
minimize the correlation between the users while minimizing
the reconstruction error between the input and the output.
Two types of training are possible. Either Bob and the set of
Alices train separate AEs with their local datasets in localized
training, or, Bob trains a global AE whose parameters are
distributed to the Alices in centralized training.

From Tables 6 and 7, note that, as in the case of PCA,
the lower the SNR, the lower the CC and the higher the
MP. Moreover, with an increase in the encoding dimensions
D̂, the AE has more freedom to represent the predictable
components. Therefore, with an increase in D̂, we observe
a drop in the CC. For the Quadriga dataset, AE2 achieves a
CC of 0.22 for D̂ = 8 and SNR= 20 dB for the residual
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TABLE 6. AE: key results for quadriga.

TABLE 7. AE: key results for nokia dataset.

components, without a significant increase in MP for cen-
tralized training. This CC is almost equal to what the PCA
achieves for the Quadriga dataset D̃1 = 2 and D̃2 = 20. For
theNokia dataset, AE2 achieves a CC of 0.07which is smaller
than what PCA achieves in all cases.

Also, the 1 of the residuals shows a significant decrease
from that of the original components, especially for SNR=

20 dB. Observe that in AE2, since the loss function is the
dot product between residuals instead of the MSE, we can
observe a significant drop in CC of the residuals for AE2 com-
pared to AE1. However, this is accompanied by an increase
in the MP, especially for localised training. Also, as expected,
centralised training results in a much lower MP when com-
pared to localised training. A very similar trend is observable
in the case of the Nokia dataset also. In this case, the residual
CC for D̂ = 8 and SNR= 20 dB, is much lower than what
PCA attains for the same data set for D̃1 = 6 and D̃2 = 30.

C. RANDOMNESS AND KEY-RATE ANALYSIS OF THE
PRE-PROCESSING SCHEMES
In the previous subsections, we analyzed the CC and MP
trends of different schemes. However, it is also crucial to
discuss the unpredictability of binary sequences at both
the pre-processing and final stages using the conditional
min-entropy and the leakage as metrics. In this subsection,
we present the results of the proof-of-concept analysis of
these metrics using only PCA and AE2 schemes, for com-
pactness of presentation.

We estimate the conditional min-entropy and leakage at
the input of the reconciliation decoder, with and without pre-
processing, using the FBLEAUML-based estimator [13] and
the results are displayed in Table 8.4 The evaluation indicates

4We note in passing that if no reconciliation is used then the theoreti-
cally achievable secret key rate cannot be attained, resulting in sub-optimal
implementations.

TABLE 8. Evaluation of conditional min-entropy and leakage
using FBLEAU numerical estimator [13]. The table shows
average values per bit.

that although the original data has high entropy, consider-
able leakage is observed if no pre-processing is applied. The
results show that applying PCA can decrease the leakage and
retain min-entropy. Additionally, we can observe that AE2
provides a further improvement by reducing the leakage to
Eve. These results demonstrate that the pre-processing tech-
niques proposed in this study can indeed reduce information
leakage to neighbouring nodes, leading to larger values of
conditional min-entropy and therefore lower hashing rates.
These findings are aligned with the decrease seen in the
normalized dHSIC test statistic and provide further proof
of the decrease in dependencies of observed CSI vectors in
neighbouring locations using the proposed pre-processing.

Next, to evaluate the final key rate expressed in Eq. (6),
we perform information reconciliation using cyclic redun-
dancy check (CRC) aided polar codes with a list size of
128 and a block length of 512 bits (considered a frame)
over the quantized data [46]. In our setup, Alice encodes the
channel observations ya into ua denoted by ua = yaGn, where
a generator matrix Gn for polar codes with a blocklength
of n = 2m. Alice sends a syndrome signal, sa, through
the channel, consisting of 11 CRC bits and the remaining
high-entropy bits from ua, determined by an entropy-based
selection criterion. Bob’s goal is to estimate Alice’s channel
observations, ŷa, using his own channel observations, yb, and
the received syndrome signal, sa. Bob employs CRC-aided
successive cancellation list decoding for this task. The frame
error rate (FER) quantifies the probability of Pr(ya ̸= ŷa).
After Bob estimates Alice’s channel observations, both Alice
and Bob can independently generate secret keys from ya.
The FER for different coding rates are depicted in Fig. 18.

The coding rate in the simulations ranges from 0.3 to
0.95 with a step size of 0.05. Please note that the zero FER
code rates have not been marked in the plot due to the
logarithmic scale for the FER, i.e., for no pre-processing the
minimum code rate to achieve zero FER is 0.35, while for
PCA and AE it is 0.3 and 0.75, respectively. Note that as the
MP of the quantized sequences at Bob and Alice increases,
lower rate reconciliation is needed to achieve SKG without
any key disagreement. Nevertheless, to determine the final
key rate the amount of information leakage needs also be
taken into account.

With respect to achieving zero FER when using short
code-length reconciliation, in practice, the success of the
information reconciliation step can be verified by transmit-
ting parity bits. If the derived result from the information
reconciliation does not match the parity check bits, Bob and
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FIGURE 18. The FER results for information reconciliation with
different rates.

TABLE 9. The Bit mismatch probability, maximum information
reconciliation code rate with zero key disagreement, and the
key generation rate for nokia dataset.

Alice can request extra syndrome data from each other to
finally obtain a sequence that satisfies the parity check bits.
It is important to note that the mentioned parity bits are
independent from the CRC bits used in the CRC-aided polar
code and these extra parity checks would reduce the SKG rate
further. A discussion on further parity checks is beyond the
scope of the paper.

Table 9 shows the bit MP of the generated sequence for
each scenario and the information reconciliation coding rate
that allows reliable reconciliation (zero FER in SKG), assum-
ing that a key disagreement rate (tends to) zero. The bit MP
for the original data is 0.0174 and with a coding rate of 0.35,
the mismatched bits can be corrected. After applying PCA,
the bit mismatch probability increases to 0.0318, which can
be recovered with a coding rate of 0.3 or 0.25. On the other
hand, using autoencoders (AE) significantly improves the bit
mismatch probability to 0.0038, and with a coding rate of
0.75, they can be recovered. The fact that AE is non-linear
provides more degrees of freedom compared to PCA, which
is linear, in terms of isolating entropy-rich, reciprocal com-
ponents with low information leakage to nearby nodes.

Based on the results in Tables 8 and 9, we also evaluate
the overall key generation rate in bits/sec/Hz, accounting for
the whole SKG chain, given by the product of the conditional
min-entropy and the reconciliation code rate. The resulting
values are given in the last column of Table 9. The number of
bits required to generate a key of size |r| can be evaluated
as |r|/(conditional min-entropy × code rate) (note that this
quantity represents the input size for privacy amplification,
considering |r| to be the output size).

TABLE 10. Randomness evaluation using the NIST test suite
from [33].

In this work we maintain a consistent output key size of
256 bits (that can be used for example with the advanced
encryption standard (AES) with key size k=256). Table 9
shows the corresponding key generation rate where the higher
the key generation rate, the faster we can generate keys. Our
analysis reveals that AE2 provides the highest key generation
rate at 0.73 b/s/Hz, while PCA offers 0.22 b/s/Hz, which
is below that achieved without pre-processing. Our previ-
ous conclusion that nonlinear pre-processing is advantageous
(i.e., AE as opposed to PCA) carries over for the overall
achievable key rate. Looking at the bigger picture, to obtain
256 key bits while satisfying (6), longer input sequences are
required without pre-processing or when using PCA com-
pared to AE.

After determining the maximum allowable size of the
final key, we use a one-way collision-resistant compres-
sion function to compress the sequences to the desired
size (i.e., 256 bits). Commonly used compression functions
for this purpose are universal hash functions, while in this
work we propose the use of cryptographic hashing such as
SHA256, to ensure that the generated keys are maximum
entropy and resistant to brute-force attacks at the input of the
hash function.

Furthermore, to verify the randomness of the generated
keys, we subject them to tests from the NIST randomness test
suite [33]. These tests evaluate various aspects of random-
ness, such as uniformity, independence and unpredictability,
to ensure that the generated keys are of high quality and meet
the necessary security standards. In this work, we consider
a subset of these tests as shown below since some tests
require size larger than 106 bits and are not practical for
the current study [22]. The results of the tests are provided
in Table 10, where the success rate and average p-value of
each test are reported. The results are averaged over the two
pre-processing mechanisms (PCA and AE). We can see that
the average success rate approaches one, hence, the generated
keys pass comfortably the NIST tests.

D. COMPARISON OF THE PRE-PROCESSING SCHEMES
Summarizing the three schemes, the study indicates that
for PCA omitting the first few PCs (between 2 and 14)
leads to a decrease in CC without significantly increasing
the MP. KPCA, on the other hand, performs better with
higher values of D̂, which increases the MP but decreases
the average dependence level. Finally, AE1 and AE2 perform
better than PCA and KPCA in terms of both CC and MP.
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Furthermore, AE2 outperforms AE1 in terms of residual-
CC, 1, and MP for both localized and centralized training
methods and achieves higher conditional min-entropy and
less leakage compared to PCA. This result indicates that AE2
provides better randomness and secrecy of the generated key.

Also, the success rate and average p-value of the NIST tests
are quite high, indicating that the generated keys are of high
quality and meet the necessary security standards. Finally,
AE2 significantly outperforms the original representation
and PCA pre-processing in terms of BER and information
reconciliation coding rate. Specifically, AE2 achieves a sig-
nificantly lower BERwith a higher information reconciliation
coding rate, leading to a higher key generation rate. This
suggests that AEs can provide better performance than PCA
or KPCA.

In terms of computational complexity, that of PCA can be
broken down into three main steps: computing the covariance
matrix, computing the eigendecomposition of the covariance
matrix, and projecting the data onto the eigenvectors. How-
ever, the computational complexity of PCA is dominated
by the eigendecomposition step, which has a complexity
of O(M3), assuming a standard algorithm such as the QR
algorithm or power iteration.

The computational complexity of an AE can be estimated
by the number of operations required to perform a forward
pass through the network. This can be estimated by counting
the number of operations required to compute the matrix mul-
tiplications and activations in each layer. The total number
of operations required for a forward pass through AE1 is
approximately 31590 + 21D̂. For AE2, the only difference
is the dimensions of the input and output layers, which are
both 400 instead of 200. Therefore, the number of operations
required for a forward pass through AE2 is approximately
67570 + 21D̂. In order to decrease the complexity and the
corresponding hardware requirements, iterative pruning and
quantization techniques can be investigated. For example,
after initial training, one can use the Tensorflow API called
Tensorflow Model Optimization that eliminates the smallest
weights at the end of every training step following a polyno-
mial decay schedule [47].

VII. DISCUSSION AND CONCLUSION
In this paper, we focused on dimensionality reduction
techniques as pre-possessing for PLS. To demonstrate the
effectiveness of our approach, we built and evaluated
pre-processing approaches using PCA and AE for disentan-
gling predictable from unpredictable components of observed
CSI vectors. This allowed for the simultaneous use of CSI
for authentication and key distillation. We also discussed the
trade-off between correlations and dependencies at different
locations, that can be extended to include time, frequency, and
antenna domains, and the importance of reciprocity for the
unpredictable components used in SKG.

We proposed the use of TVD as a separability measure
of empirical fingerprints and used four different metrics for
statistical dependence to systematize pre-processing criteria

for SKG. Our evaluation showed that PCA was a straightfor-
ward approach for disentangling large from small scale fading
terms in observed CSI, while KPCA and AE were shown to
increase performance by capturing nonlinear structures, at the
cost of explainability.

Some potential areas for future exploration in incorporat-
ing PLS in 6G security protocols could include:

• Further investigation of time, frequency, and antenna
domain dependencies, potentially utilizing time domain
separation techniques (preliminary results using Kalman
filters have provided promising performance).

• Extensive evaluation and comparison with a range
of ML-based power-domain decomposition techniques,
such as independent component analysis (ICA), support
vector machines (SVD), and convolutional neural net-
works (CNNs).

• Integration of more sophisticated AE implementations,
such as those incorporating dHSIC or both dHSIC and
MP into the loss function.

• Development of precise thresholds for the selection of
appropriate CSI decomposition, considering both CC
and MP values.

• Study of key mismatch due to various imperfections in
the communication system, non-reciprocity between Tx
and Rx using different size antenna arrays, phase and
amplitude offsets, noise, interference, and other impair-
ments that will impact reciprocity.

In conclusion, our proposed approach demonstrates the
effectiveness of incorporating PLS technologies in 6G secu-
rity protocols while providing strong security guarantees. The
future explorations will provide more insight into the poten-
tial applications and performance of the proposed approach
to enhance 6G security protocols.
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