
A Softwarized Intrusion Detection System for the RPL-based Internet of Things

George Violettas1, George Simoglou, Sophia Petridou, Lefteris Mamatas

Dept. of Applied Informatics, University of Macedonia, Egnatia 156, Thessaloniki, Greece

Abstract

Internet of Things (IoT) constitutes a pivotal contributor to the Industry 4.0 (I 4.0) vision, technologically transforming production
and societies. It enables novel services through the seamless integration of devices, such as motes carrying sensors, with the Internet.
However, the broad adoption of IoT technologies is facing security issues due to the direct access to the devices from the Internet,
the broadcasting nature of the wireless media, and the potential unattended operation of relevant deployments. In particular, the
Routing over Low Power and Lossy Networks (RPL) protocol, a prominent IoT solution, is vulnerable to a large number of attacks,
both of general-purpose and RPL-specific nature, while the resource-constraints of the corresponding devices are making attack
mitigation even more challenging, e.g., in terms of involved control overhead and detection accuracy.

In this paper, we introduce ASSET, a novel Intrusion Detection System (IDS) for RPL with diverse profiles to tackle the above
issues that mitigate at least 13 attacks. At the same time, other solutions go up to eight. ASSET, inspired by the network softwariza-
tion paradigm, supports a novel, extendable workflow, bringing together three anomaly-detection and four RPL specification-based
mechanisms, a novel attacker identification process, as well as multiple attack mitigation strategies. Our IDS also supports an
adaptable control & monitoring protocol, trading overhead for accuracy, depending on the network conditions. The proof-of-
concept experiments show that ASSET entails a low overhead for the different modes of operation it supports (i.e., 6.28 percent on
average) compared to other solutions reaching up to 30 percent. At the same time, it also keeps the power consumption at acceptable
levels (from 0.18 up to 1.54 percent more). Moreover, it provides 100 percent accuracy for specific attacks and can identify the
attacker in far more attacks than any other similar solution.

Keywords: Internet of Things, RPL protocol, RPL attacks, IoT security, Intrusion Detection System

1. Introduction

Internet of Things (IoT) does rapidly develop and, among
others, is the technological enabler for smart-x ecosystems and
the next-generation advanced manufacturing, referred to as I 4.0
(Industry 4.0), that includes smart products, smart production,
and smart services. Indeed, recent advances in communication
technology, e.g., 5G Networks, along with the Industrial IoT
(IIoT), evolve the request for mass production and automation
from the principle idea to connect everything in the production
chain to the more sophisticated context of broader and more
fine-grained interconnections [1]. For example, a network of
geographically distributed factory branches requires sharing re-
sources and assets to improve order fulfillment. Data transfer
among different entities is an essential but also a critical issue
in such an automation ecosystem. The facility of exploiting
everyday Internet-enabled devices as endpoints of accessing re-
sources is an asset. Still, it entails hundreds of smart devices,
sensors, and actuators communicating throughout large-scale
IoT deployments, where, among others, security is an essential
requirement.

1Corresponding author, georgevio@uom.edu.gr, orcid=0000-0003-2560-
7805

1.1. Motivation

A prominent, standardized routing solution for IoT is the
Routing for Low Power and Lossy Networks (RPL) [2, 3], char-
acterized by significant benefits. These include IPv6 support,
moderate control overhead, and efficient low-power operation
under challenging conditions, e.g., lossy links, heterogeneous
and constraint devices with respect to their power, storage,
memory and processing capabilities [4, 5]. Despite its advan-
tages, RPL still has open issues, the most important of which
are related to attacks since it is based on the IP(v6) open stack
and primarily uses wireless media for the nodes’ communica-
tion.

According to the literature [6], RPL-related attacks in-
clude malicious actions aiming at: (i) exhausting nodes’ re-
sources as a means of significantly reducing the network’s
lifespan and availability, (ii) disrupting the structure of the
Destination-Oriented Directed Acyclic Graph (DODAG), upon
which nodes’ communication is based, affecting network’s per-
formance in respect to packet losses and end-to-end (E2E) de-
lays. Passive attacks that monitor and intercept network traffic,
e.g., sniffing, traffic analysis, are not part of the paper’s scope
since they do not exclusively concern RPL. In fact, some at-
tacks have no significant impact as standalone events, but they
can be critically detrimental to the network in conjunction with
others. Indicatively, impersonation attacks leave space for ma-

Paper accepted in Future Generation Computer Systems, 2021. https://doi.org/10.1016/j.future.2021.07.013 Elsevier July 28, 2021



licious activities to originate inside the network, against which
encryption is not a suitable solution [7] because, for example,
an insider attacker getting access to symmetric keys bypasses
the applied RPL security mechanisms. Authenticated security
could be a solution, but RPL RFC [2] does not specify any
mechanisms for public key cryptography [8], which possibly
cannot be supported by constrained nodes [9]. Hash schemes
have been used for topology authentication without being able
to mitigate rank-replay attacks [10].

On the protocol bulletproofing front, the RPL standard [2]
specifies three modes of operation, i.e., unsecured mode, pre-
installed mode, and authenticated mode. At the same time, it
also defines mechanisms for data confidentiality and authentic-
ity, and replay protection [11, 12]. Nevertheless, up to this time,
RPL implementations on the most commonly used operating
systems (e.g., Contiki OS and TinyOS) assume the unsecured
mode of operation, putting aside RPL’s security features, which
are essentially characterized as optional. Authors in [11, 13]
elaborate on a partial implementation of such features, while ac-
cording to [8], future versions of RPL will address issues such
as authenticated security.

Until then, a suitable approach to encounter malicious ac-
tivities is the Intrusion Detection Systems (IDSs) [6, 7, 12].
IDSs refer to a set of methods designed toward: (i) detecting
an attack, (ii) identifying the attacker, and (iii) mitigating the
event. They aim to detect several attacks concurrently, and
ideally, they can be extended to deal with attacks that are not
originally included in their design goals. Compared to the stan-
dalone mechanisms, they require some degree of collaboration
among the network’s nodes [12].

Regarding the RPL security, the design, development, and
evaluation of an IDS should satisfy a set of requirements that
reflect the solution’s width and depth. We define the metrics of
robustness and extendability for quantitative evaluation (width),
referring to the range over which the impact of an IDS can be
spread with respect to the number of attacks detected. Further-
more, given that new attacks and security issues emerge follow-
ing the IoT research’s progress, IDSs should be developed as
a set of software components (mechanisms) to be quickly and
on-the-fly modifiable to encounter attacks beyond their initial
scope.

Moreover, we define the metrics of accuracy and mitiga-
tion time for qualitative evaluation (depth). In fact, an IDS
should exhibit a high accuracy rate regarding both the event
and the adversary; this means that the system does not misin-
terpret normal events or nodes’ behavior as attacks or attackers,
respectively, while minimizing the cases that attacks or intrud-
ers are overtaken. Once an attack/attacker has been detected,
a mitigation strategy should be employed to rapidly handle the
malicious nodes and restore the network’s operation.

The research field of IDSs in the IoT domain is generally
vast. Still, only a restricted subset of them is appropriate for
Low-power and Lossy Networks (LLNs) [14, 15], i.e., they take
into consideration limitations regarding their lossy links, het-
erogeneous and resource-constrained devices. In fact, most of
them have been proposed in the recent bibliography, i.e., from
2013 to 2020 [6, 12, 14]. An overview of these works makes

clear that there is no one-for-all solution that succeeds in all
three axes, i.e., to detect a number of attacks at once, to identify
the intruder, and to mitigate the event, and at the same time,
meet the aforementioned requirements of robustness, extend-
ability, high accuracy and rapid mitigation.

1.2. Contribution
Along these lines, we introduce ASSET, a softwarized Intru-

sion Detection System that offers a holistic approach to shield
an RPL-based IoT network against different types of attacks.
Our system is inspired by the Software-Defined Networking
(SDN) paradigm, i.e., it transfers functionality from the con-
straint end-nodes to central premises, i.e., the controller, of-
floading both computational and communication overhead. At
the same time, it follows a modular architecture that allows
adaptations.

In particular, ASSET offers a novel workflow hosting well-
known mechanisms for data analysis, e.g., the K-Means algo-
rithm, that can efficiently collaborate in data exchange toward
detecting several attacks and multiple intruders in the network.
The challenging point is that we managed to appropriately syn-
thesize a framework of independent components that are not
merely put one next to the other, but work as an integrated
whole. Moreover, ASSET’s workflow provides the background
for further enhancements and extensions regarding detection or
mitigation of attacks.

Next, we experiment with a minimum set of mechanisms for
anomaly and RPL specification-based detection, able to address
as many as 13 different types of RPL-related attacks with high
accuracy and moderated cost. We exploit our literature review
findings showing that combining detection methods as well as
placement strategies brings advantages to the system [14]. In
particular, ASSET hosts three anomaly detection methods on
the node and/or on the controller-level to provide the alterna-
tives of a lightweight and a computationally-intensive solution,
and four specification-based ones.

Most importantly, we develop an adaptable control & mon-
itoring protocol enabling centralized network supervision. In
practice, the protocol offers: (i) monitoring of RPL-related data
like UDP packets or ICMP statistics in an adaptable fashion,
i.e., trading the amount of communicating information for con-
trol overhead in respect to the network’s conditions; (ii) con-
figuring RPL parameters on-the-fly as a means of enforcing
central decisions to the network nodes once a mitigation action
should be taken; and (iii) communicating node-level anomaly
detection events that should trigger further investigation cen-
trally, e.g., detailed monitoring by the controller. To achieve
adaptability, we define three modes of the protocol’s operation,
i.e., slim-mode that offers “baseline” monitoring at regular peri-
ods, essential-mode that indicates the first level of surveillance
due to detected anomalies in more than three nodes, and full-
function-mode that denotes the need of intensive surveillance
due to detected anomalies that require detailed data from IoT
nodes.

Novelties of ASSET could be summarized as follows: (i) de-
tection and mitigation have been automated since all the mech-
anisms are incorporated under the umbrella of one workflow,

2



orchestrated by the central controller; (ii) existing node-level
features became centralized to offer a better balance and re-
sponse capabilities; (iii) node-level features are programmable,
with some addressing several attacks, providing a holistic view;
(iv) the modular architecture makes it easy to add new features
or alter existing ones; (v) it can be easily deployed over any
kind of RPL network, anywhere in the central infrastructure, by
only materializing the connection with the sink node; (vi) the
bespoke fully parameterizable GUI provided, makes it a pow-
erful tool in the hands of network administrators.

The rest of the paper is outlined as follows. We briefly
present the RPL protocol and the attacks associated with it in
Section 2. In Section 3 we elaborate on the proposed system, in-
cluding details of its architecture, interfaces, and mechanisms.
Our evaluation results are illustrated and discussed in Section 4.
Related IDSs along with a comparative overview are presented
in Section 5, while conclusions along with further-step ideas
are summarized in the final section.

2. Background

2.1. RPL Protocol
Our work elaborates on the RPL protocol [2] since it is the

state-of-the-art routing protocol for LLNs. RPL is a distance-
vector IPv6 protocol operating over the 6LoWPAN (IPv6 over
Low-Power Wireless Personal Area Networks) protocol stack
where each node builds the so-called DODAG to maintain
an updated network topology [4, 5]. RPL primarily supports
multipoint-to-point communications, i.e., from the leaf-nodes
upwards to the sink-node(s), which operates as a border router
connecting the LLN with fixed infrastructure, e.g., via a serial
connection.

RPL constructs the DODAG by utilizing an Objective Func-
tion (OF), which evaluates the different possible pathways from
every node to the sink by solving a multi-variable, multi-
objective optimization problem for routes’ discovery. The
default Minimum Rank with Hysteresis Objective Function
(MRHOF) [16] considers the number of hops to the sink-node
and/or the quality of each link between participating nodes
into the above pathway(s) by utilizing the Expected Transition
Count (ETX) metric. Other more sophisticated OFs are also
described in the bibliography [17].

To avoid DODAG loops, RPL assigns each node a rank
value related to the rank of the attached parent-node and the
distance from the sink. A node can be (re-)attached to the
graph with a lower rank than its current one upon discovering
a new preferred parent. The opposite case (an updated greater
rank) triggers a Global Repair self-healing mechanism, i.e., re-
calculating ranks for all network nodes [18], to avoid count-
to-infinity problems. Moreover, a node resets its rank and re-
solicit neighbors (i.e., Local Repair) once it loses its parent, i.e.,
without waiting for the whole network to reset [19]. To avoid
exploitation of the above mechanisms that cause overhead and
delays, RPL RFC [2] suggests a maximum threshold per hour
for the repairs.

RPL’s RFC [2] also defines four ICMPv6 (Internet Con-
trol Message Protocol) messages for information exchange and

facilitating the DODAG construction. The DIO (DODAG In-
formation Object) message is first fired by the sink, multicas-
ted and populated downwards until all reachable nodes receive
it. Among others, it includes timer settings, DODAG version,
and mode of operation (storing/non-storing). DAO (Destina-
tion Advertisement Object) messages travel upward, advertis-
ing each node’s ancestor until reaching the sink. The same in-
formation (node-ancestor pair) is also stored by each node the
DAO went through. This way, each node maintains a version
of the DODAG. DIS (DODAG Information Solicitation) is a
unicast message beaconed periodically by a parentless node to
solicit potential parents in its radio-coverage vicinity. DAO-
ACK is an optional message for DAO acknowledgment that is
usually omitted since it causes heavy overhead.

As the fundamental pillar of RRL, the DODAG needs to be
updated and maintained frequently. A dedicated algorithm—
the Trickle Timer—handles the frequency of DIO messages,
upon which the graph’s convergence time is based. The algo-
rithm balances preserving the node’s power consumption and
keeping the network information up-to-date and trustworthy.
To achieve this trade-off, DIO messages dispatching frequency
varies from a few seconds, up to 17.5 min, since the Trickle
Timer’s duration is doubled each time it fires [5]. Any change in
the DODAG, e.g., unreachable parent, DIO or DAO mismatch,
or new parent selection, causes a Trickle Timer Reset for the
particular node. As a result, DIO messages are dispatched at a
higher rate when the network is unstable and at a slower rate
otherwise, preserving energy and reducing network traffic.

DODAG as well as the RPL messages and mechanisms, are
the origin of the so-called RPL-related attacks described in the
next section.

2.2. RPL-related Attacks

Routing in the RPL networks is challenging due to the re-
source constraints of the connected devices. Moreover, such
networks support dynamic topologies and are based on the
wireless medium’s passive nature. Consequently, they attract
malicious actions, including but not limited to denial of service
attacks (DoS), physical damages, and/or extraction of sensitive
information, e.g., DODAG version, nodes’ rank values, and
nodes’ IDs. In fact, legitimate nodes can be compromised by
exploiting the RPL mechanisms themselves. Suppose a com-
promised node is located near the sink. In that case, a combi-
nation of attacks can be launched with severe effects, spanning
from resource-depletion of nodes, due to a sharp increase in
the control overhead, to delays in data delivery, owing to graph
repairs.

A. Raoof et al. [12] provide an interesting classification of
the attacks that are due to the WSN (Wireless Sensor Networks)
inherited features and those designed to explicitly exploit the
protocol’s mechanisms or vulnerabilities. Along these lines,
we briefly present a comprehensive list of the most common
and disrupting attacks on the RPL protocol in the light of their
origin rather than their impact, e.g., Sinkhole attack can degrade
the quality of service in the network and eventually results in
DoS to some parts of it [12].

3



In RPL networks, similar to the WSNs, topology exploita-
tion is an obvious starting point of malicious actions since
packet routing depends on the DODAG. Typical routing disrup-
tion attacks, such as Wormhole [15, 20, 21], Blackhole [15, 22],
and Selective Forwarding [15, 23] (also known as Grayhole),
cause network traffic loss, topology inconsistencies, and signif-
icant delays since parts of the network can get disconnected.
A malicious node may either drop packets (completely or par-
tially) or alter its standard routes once it gains an important po-
sition in the graph, e.g., a parent-node with many other nodes
attached.

Other typical network attacks, like Flooding [24], Re-
play [25] or Neighbor [24] attacks, execute repetitive or fal-
sified message-sending, in order to deceive their victims and
introduce inconsistencies. This subtle manipulation can yield
severe topology issues and excessive energy consumption, es-
pecially in dynamic networks with mobile nodes [26]. Unlike
Replay attacks in WSNs, which are performed with data pack-
ets, in RPL, the idea is to record legitimate control messages
and forward them later.

Impersonation attacks, such as Clone-ID [6], or the more
sophisticated Sybil attack [23], are originated from a mali-
cious node embezzling the identity(ies) of one or several le-
gitimate(s) node(s). The goals vary from disrupting the rout-
ing topology to submitting forged data in the network or de-
ceiving/manipulating a reputation-based/voting-based system.
These types of attacks need a centralized authority to be tack-
led successfully [27].

Besides the above, several attacks exploit specific RPL fea-
tures, such as the rank and version fields of control messages,
the protocol’s self-healing mechanisms, or operation modes.
Rank attacks include: (i) Decreased Rank [28] or Sinkhole [23]
attack, where the malicious node advertises a low-rank value to
force all neighboring nodes to select it as a parent; (ii) Increased
Rank [29, 30] attack, where an adversary near to the sink ad-
vertises a high-rank value to compel all neighboring nodes to
avoid it and eventually sub-optimize their parent choice; and
(iii) Worst Parent [30] attack, where the adversary intentionally
makes the worst parent selection for itself to forward the re-
ceived packets via non-optimal paths. Eventually, an attacker
can powerfully reshape the topology to diverge from the op-
timum one [31] with sub-sequences regarding increased traffic,
high energy consumption, packet delay, and even routing loops.

DODAG inconsistencies are an ordinary situation that is
normally addressed by the protocol’s self-healing mechanisms
as a means of nodes’ s energy conservation. Unfortunately, in
several cases, an adversary can take advantage of them. Well-
known examples include DODAG Version or DODAG Inconsis-
tency [32], Global Repair [33, 34], Local Repair [15], DIS mes-
sage [24, 35], and DAO inconsistency [6] attacks. Indicatively,
Local Repair messages from a malicious node cause all neigh-
boring nodes to unnecessarily re-calculate their paths, causing
control overhead and resource exhaustion. Even worse is the
case of exploiting the Global Repair feature (by advertising a
higher version number compared to the current one) to recon-
struct the whole DODAG from scratch. The malicious node at
the network edge may result in severe topology inconsistencies,

routing loops, and delays.
The Routing Table Overload [24], and Routing Table Falsi-

fication [30] attacks resemble Flooding and Replay attacks, in
the sense that an adversary sends plenty of bogus routes. The
goal is to either disorient compromised nodes or saturate their
routing tables directly and not accept legitimate DAO messages
upon which correct routes can be built up. Memory depletion,
packet loss, and delays are among their effects.

In the aftermath, elaborating on security issues stemming
from the attacks is very challenging due to the diversity of at-
tacks, the particularity of malicious nodes’ placement in the net-
work, and the detrimental effects of combining simple attacks,
among others. Since many of the attacks share common fea-
tures regarding either their origin, e.g., local repair self-healing
mechanism exploitation, or their impact, e.g., irregularities in
the data and/or control packet rates of the affected nodes, our
proposal invests in this observation. Thus, ASSET accommo-
dates a minimum set of mechanisms for anomaly and RPL
specification-based detection, able to address as many as 13
different types of RPL-related attacks with high accuracy and
moderated cost. Next, we present and discuss ASSET’s details.

3. Proposed System

Here, we provide the design artifacts of ASSET, including
its high-level architecture and details of the control channel
interface. Furthermore, we describe the basic workflows for
attack detection, intruder identification, and attack mitigation,
along with the relevant incorporated mechanisms.

ASSET can mitigate a large number of attacks with high ac-
curacy since it exploits the softwarization paradigm in computer
networks that allows: (i) centralized monitoring and control of
the network; (ii) co-existence of multiple mechanisms while be-
ing extendable to support new algorithms; and (iii) considera-
tion of both global and local viewpoints of the IoT network. For
example, anomaly detection at the node (or a central) level may
trigger other specification-based detection mechanisms. At a
functional level, ASSET mainly consists of a network Con-
troller with attack detection, attacker identification and miti-
gation algorithms, a control channel interface with adaptable
control overhead, and node-level features for anomaly detec-
tion, network control and monitoring.

The Controller can collect information, both passively and
actively, from different layers, i.e., we currently utilize network-
layer and application-layer data. Such a cross-layer approach
helps to maintain a detailed network view towards accurate
decision-making. Attacks’ mitigation is possible by mandat-
ing RPL-parameters changes in real-time, e.g., like in [36, 37].
In practice, it provides a front-end to the administrator, support-
ing several mechanisms for detecting both the attacks and the
attackers, along with threat mitigation. The Controller com-
municates with the nodes through the Southbound Interface,
utilizing a lightweight protocol to lookup or configure partic-
ular RPL parameters on-the-fly, monitoring the network in an
adaptable fashion, i.e., trading information accuracy for control
overhead, and communicating anomaly detection events from

4



the data communication to the application plane. Such infor-
mation is derived by lightweight monitoring and fast anomaly
detection on a node-level, to reduce communication overhead
with the Controller.

The proposed IDS has been implemented in Contiki
OS [38] and Java, also utilizing the Weka [39], and Graph-
stream libraries [40] featuring a unified workflow that embodies
several mechanisms addressing multiple attacks. In practical
terms, the code is under refactoring, targeting goals such as full
modularity and extendability, e.g., the ability to add or replace
an anomaly detection mechanism. We released the IDS as an
open-source2, under GPLv3.0.

Regarding nodes’ heterogeneity, although we used Zolertia
Z1 firmware, we noticed that other node types are also compat-
ible (e.g., Sky motes). More experiments with heterogeneous
hardware and software can benefit ASSET.

We now detail the IDS architecture and its primary inter-
faces.

3.1. Architecture & Interfaces

Figure 1: The architecture of ASSET IDS.

The ASSET IDS adopts a three-tier architecture, aligned to
the SDN paradigm [41]. In Fig. 1, we depict the Data Commu-
nication, Control, and Application Planes as well as their main
components detailed below.

The Data Communication Plane concerns the IoT infras-
tructure, including the RPL-based protocol stack of the corre-
sponding nodes. We enable cross-layer configuration hooks to
the protocol stack [36, 37] allowing the Controller to read or
apply configuration settings, e.g., to instantly enforce changes
in RPL operation to mitigate attacks. Furthermore, the nodes
support control packet statistics being either processed locally,
i.e., by manifesting per-node anomaly detection capabilities,
or communicated to the Controller. The Data Communication
Plane interacts with the Control Plane through the Southbound
Interface, carrying either packet statistics from the nodes to the

2https://github.com/SWNRG/ASSET

Controller or configuration actions towards the opposite direc-
tion.

The other two layers, i.e., the Control and Application
Planes, reside at the Controller and interact between each other
through the Northbound Interface, which is REST-based. The
Control Plane is responsible for the network control aspects,
while the Application Plane for the IDS data analysis and GUI
features.

The Control Plane is attached to the sink node, employ-
ing passive and active data communication monitoring of the
nodes, i.e., retrieving data communication statistics from the
sink or the nodes, respectively. The RPL control engine is re-
sponsible for enforcing particular RPL configuration processes
and receiving node-level anomaly detection events from the
nodes. The data communication statistics and the anomaly de-
tection events are being communicated to the Application Plane
through the Northbound Interface for further actions. Further-
more, the Control Plane maintains a real-time network repre-
sentation based on the Graphstream library [42, 40].

The Application Plane provides the GUI and configuration
aspects of the IDS. It supports a real-time visualization of the
IoT topology, which also designates potential IoT nodes acting
as attackers. Furthermore, it provides handles to the admin-
istrator for management and configuration aspects of the IoT
network and the intrusion detection process. Finally, it is re-
sponsible for the data analysis tasks of the Controller, including
controller-level anomaly detection algorithms, specification-
based detection mechanisms, classification algorithms for the
attacker identification, as well as a counter-measures engine,
being responsible for triggering attack mitigation processes, as
a result of the data analysis.

We now move on to discussing ASSET’s interfaces. Since
the Northbound Interface is an internal interface of the Con-
troller, we mainly focus on the Southbound Interface, which
is essential for the performance of ASSET, especially towards
reducing the involved control overhead.

3.1.1. The Southbound Interface
The Southbound Interface utilizes a lightweight

application-level protocol that allows the Controller to
communicate with the nodes via the sink. The protocol main-
tains compatibility with the RPL standard while being flexible
to incorporate new features, such as a newly discovered attack.
It supports either pulling of information, i.e., the Controller
retrieving monitoring information or configuration parameters
from nodes, or pushing information, i.e., the nodes notify the
Controller regarding their monitored data periodically. The
implemented protocol configuration hooks [5, 37, 4], based
on the relevant interfaces implemented in the context of the
WiSHFUL project (i.e., called UPIs), enable the Controller
to act as a centralized network control facility, especially for
enforcing attack mitigation measures.

The Southbound Interface is responsible for the following
aspects: (i) monitoring nodes on the statistics of packets ex-
changed and RPL behavior, with different levels of accuracy
and communication overhead, depending on the criticality of

5

https://github.com/SWNRG/ASSET


network conditions; (ii) enforcing changes in RPL protocol be-
havior of nodes to mitigate an attack; and (iii) communicating
node-level anomaly (or specification-based) detection events—
from the nodes to the Controller—for triggering further ac-
tions. In practical terms, the interface operates in three different
modes, i.e., slim-mode, essential-mode, and full-function-mode,
described as follows:

1) In slim-mode, ASSET operates with the minimum num-
ber of monitoring messages, being essential to construct the
complete graph of the network centrally. Either the Controller
requests the parent of a node, or the nodes are periodically re-
porting all parent changes. This mode is in place in networks
without attack indications.

2) In essential-mode, the nodes transmit to the Controller—
besides the slim-mode notifications—periodic ICMP statistics,
which enable controller-level anomaly detection. This mode is
enabled when a node detects an attack through its node-level
anomaly detection process.

3) In full-function-mode, the nodes complement the previ-
ous modes with additional information, i.e., the node’s rank and
neighbor information for ASSET to detect—among others—
Rank and Sybil attacks with higher precision. The ASSET ad-
ministrator can configure and enable this mode when certain
criteria are met (a given number of nodes detect an anomaly).

Table 1: Messages exchanged between the Controller and the nodes.

ID MESSAGE FORMAT DESCRIPTION M

N
od

es
In

iti
at

ed

NP [IPv6][IPv6][int] Node’s current parent S

IS [IPv6][int] ICMP statistics

EAD [IPv6][boolean] Anomaly detection notification
VN [IPv6][boolean] Version attack notification
RN [IPv6][boolean] Local Repair attack notification

NR [IPv6][int] Nodes’ current rank FNN [IPv6][IPv6 neighbors][list] Available neighbors and their ranks

C
on

tr
ol

le
r

In
iti

at
ed

SP [IPv6][int] Requests the node’s parent S

SN [IPv6][list] Solicits node’s neighbors information
EI [IPv6 or multicast][boolean] Enable/Disable ICMP notifications

E
TT [IPv6 or multicast][boolean] Enable/Disable Trickle Timer reset
BL [IPv6][boolean] Node blacklisted (Y/N)
LR [IPv6 or multicast][boolean] Enable/Disable Local Repair
GR [IPv6 or multicast][boolean] Enable/Disable Global Repair

SN [IPv6][list] Solicits node’s neighbors information FNL [IPv6 or multicast][boolean] Enable/Disable neighbors information
(M)ode: S: Slim, E: Essential, F: Full-function

We now describe in detail the messages exchanged between
the Controller and the nodes. In Table 1, we enlist all messages,
and their design primitives, supported by the Southbound In-
terface and its corresponding network control and monitoring
protocol. The last column depicts the specific mode they are
utilized with (i.e., slim, essential, full-function).

In RPL, nodes collect information about their neighbors
(i.e., nodes within the wireless radio coverage) and nominate
a preferred parent within time instances specified by the Trickle
Timer algorithm. This way, a network graph, i.e., the DODAG,
is constructed in a distributed manner. Since this information
is local, we implemented a notification feature in every node
triggered by any parent-change event. In such a case, the node

transmits a message to the Controller indicating the latest cho-
sen parent with its rank, i.e., a [NP] message. Consequently, the
Controller is aware of all nodes’ current parent and can form
the topology graph. Alternatively, the Controller may proac-
tively request the node’s parent information if such information
is missing through a [SP] message. Slim-mode uses these two
messages only.

Other messages from nodes to the Controller include the
[IS], [NR], and [NN], communicating ICMP statistics (e.g., to-
tal sent and received messages), node’s current rank, and avail-
able neighbors with their ranks, respectively. Whenever a node
detects an outlier in its ICMP statistics, it dispatches an [AD]
message. Furthermore, the [VN] and [RN] messages inform the
Controller for a DODAG Inconsistency or Local Repair attack,
detected by a node, respectively.

The Controller uses designated messages to: (i) solicit
missing node’s parent or node’s neighbors’ information with
[SP] and [SN] messages, respectively; (ii) enable or disable
ICMP statistics, and neighbor information notifications with
[EI] and [NL] messages, respectively; and (iii) implement ac-
tions to mitigate attacks, including disabling Trickle Timer re-
sets with [TT], blacklisting a node from becoming a parent with
[BL], and disable Local and Global Repair features with [LR]
and [GR] messages, respectively.

Consequently, the Southbound Interface enables novel AS-
SET capabilities, i.e., balancing control overhead to given net-
work conditions and the support of multiple intrusion detection
features.

In the following subsections, we elaborate on the intrusion
detection workflow of ASSET and its corresponding mecha-
nisms for attack detection, attacker identification, and attack
mitigation.

3.2. Intrusion Detection Workflow

ASSET operates over the Controller and the IoT nodes in-
terchangeably, as depicted in Fig. 2, offloading processes tradi-
tionally handled by the nodes to a centralized Controller, for a
better intrusion detection accuracy and resource efficiency.

When the network runs stably, in terms of ICMP and data
traffic behavior, the Controller collects only the active topolog-
ical structure (i.e., slim-mode). In parallel, the nodes perform
anomaly detection based on their own measured ICMP statis-
tics. In case they detect one or more outliers, they enable the
essential-mode of the Southbound Interface, i.e., start commu-
nicating the ICMP statistics to the Controller. Both nodes and
Controller complementarily support RPL specification-based
attack detection, like monitoring the number of recent local
topology repairs and DODAG inconsistencies.

The Controller performs anomaly detection on data statis-
tics to detect Blackhole and Grayhole attacks. Furthermore, it
may utilize the full-function-mode to request additional infor-
mation, such as the node’s rank and its neighbors with their
corresponding ranks to detect a Decreased Rank attack by com-
paring the rank declared by each node with those reported
by its neighboring nodes. The current version of workflow
also supports the detection of Flooding and Replay/Neighbor

6



Figure 2: An abstract view of ASSET’s, workflow both on the Controller- and
node-level.

attacks from the ICMP anomalies created and Clone-ID at-
tacks by continuously comparing all nodes’ IDs reported. De-
pending on the type of attack detected, the workflow imple-
ments an attacker(s’) identification process and several attack-
mitigation processes concerning identified malicious nodes, in-
cluding node blacklisting, suspension of Local Repairs, or
Trickle Timer Resets.

We now elaborate on the particular attack detection, at-
tacker identification, and attack mitigation mechanisms imple-
mented by the ASSET IDS workflow.

3.3. Attack Detection Mechanisms
ASSET exploits the distributed capabilities of RPL to en-

able a relatively lightweight anomaly detection on a node level
as the first line of defense. By residing on the central infrastruc-
ture, it embraces a centralized approach to provide a resource-
consuming but more accurate controller-level anomaly detec-
tion process, along with several attack-specific detection mech-
anisms. Moreover, it utilizes RPL specification-based mecha-
nisms to improve its capability to tackle more attacks.

The following subsections detail both anomaly detection
processes and the attack-specific detection mechanisms, sup-
ported by ASSET.

3.3.1. Anomaly Detection
ASSET is utilizing anomaly detection mechanisms without

the need of training data, both at node- and Controller-level.

The node-level anomaly detection operates on every in-
dividual node autonomously by monitoring the ICMP mes-
sages (DIO, DAO, DIS) produced by the node. Any irregu-
larity found is communicated with the Controller for further
action(s). Anomaly detection at a node-level is considered
rapid and efficient [43, 44], because of the locality of the de-
tected attacks. Furthermore, relevant mechanisms should be
lightweight, i.e., consider the resource-constraint nature of IoT
devices. We currently use a low-complexity and a memory-
efficient mechanism that detects irregularities, i.e., Dixon’s or
Dixon-Q Test. The same method was successfully used for de-
tecting malicious users in a cognitive radio networks setting,
outperforming Grubb’s and boxplot tests [45], with the limita-
tion of considering one malicious user only. Since the Dixon-Q
test runs on every node and communicates the possible outlier
to the controller, ASSET can employ Dixon-Q to detect multi-
ple concurrent intruders. Dixon-Q is also widely used in other
scientific disciplines, for example, as a method for rejecting
grossly deviant (outlying) values of data sets [46]. The test
assumes a normal (Gaussian) distribution of data, a typical as-
sumption of significance tests, which was found to be true for
the ICMP data produced by the nodes in random tests we con-
ducted. The behavior of the particular anomaly detection mech-
anism in our results implicitly validated this assumption.

In detail, Dixon-Q test is based on calculating a Q-value
defined as the ratio given by the distance of the value to be
tested from its nearest neighbor, divided by the range of val-
ues. If it exceeds the tabulated critical Q-test value (i.e., called
Qcrit) for a given Confidence Level (CL) and a number of sam-
ples N, then this value can be rejected with a probability of
erroneous rejection (type I error) that is a function of the se-
lected confidence level. For example, probabilities p = 0.01,
0.05, and 0.10, correspond to CLs of 99, 95 and 90 percent,
since CL = (1 − p) ∗ 100, named as confidence values q99,
q95, q90, respectively. The test’s sensitivity can be adjusted by
altering the size N of data (i.e., wsize), along with the proba-
bility p of Type I error (or confidence level, CL). Dixon-Q test
is lightweight and easy to implement for resource-constrained
devices since it only needs a couple of subtractions and one
division with every two newly arrived samples. For exam-
ple, if the samples are 3-digit, the total added complexity is
Θ(3) + O(M(3)log3, which associates with negligible overhead
for resource-constrained devices. Each time an outlier is de-
tected, it is communicated to the Controller through the South-
bound Interface as an “orange” alert to trigger further intrusion
detection actions, such as a Controller-level anomaly detection
process.

The Controller can implement more resource-consuming
attack detection approaches than the nodes, however with ad-
ditional control overhead, i.e., the IDS switches to essential-
mode, allowing for a global view of the network, to investi-
gate anomalies both in the control and data traffic. Regard-
ing the control traffic, the relevant process is enabled when-
ever Dixon-Q detects an anomaly in the neighborhood of one
or more nodes. ASSET currently employs Chebyshev’s inequal-
ity [47], acting as a more accurate but also complex example,
compared to Dixon-Q.

7



When the data distribution is unknown, Chebyshev’s in-
equality theorem guarantees that at least 1 − 1

K2 of data from
a sample fall within K standard deviations from the mean. This
can be the basis of an outlier detection method [47] by calculat-
ing relevant lower or upper outlier detection value (ODV) lim-
its. Any data value outside these limits is considered to be an
outlier. For calculating the ODV limits, there is a need to define
a p1 threshold, trimming a small percentage of extreme values
at the beginning of the outlier detection process, so outliers do
not bias the standard deviation calculation. Indicative p1 values
are 0.01, 0.05, or 0.10. Additionally, a second p2 threshold rep-
resents the expected probability of an outlier appearance. The
p2 threshold is used to determine outliers, and is usually lower
than p1, taking values like 10−2, 10−3, 10−4. Both p1 and p2
control the outlier detection process’s sensitivity and determine
the k values for the outlier pre-filtering (first phase) and actual
outlier detection (second phase) processes, respectively.

Regarding the detection of anomalies in data traffic (Black-
hole or Grayhole attacks), ASSET monitors data packet recep-
tion based on the K-means algorithm [48] implemented in Weka
library [39]. Given n measurements of nodes to be clustered, a
distance measure d to capture their dissimilarity, and the num-
ber of clusters to be created (i.e., k = 2 in our case), the algo-
rithm initially selects k random points as the clusters’ centers.
It assigns the rest of the n − k points to the closest cluster cen-
ter (according to d). Then, within each of these k clusters, the
cluster representative (also known as centroid or mean) is com-
puted. The process continues iteratively with these representa-
tives as the new clusters’ centers until convergence. Although
this is an NP-hard problem, it is simplified by heuristic algo-
rithms to converge to a local optimum [49].

Next, we describe the specification-based mechanisms of
the Controller.

3.3.2. Specification-based Detection
To highlight the extendability benefits of ASSET, we in-

troduce basic building blocks that can form alternative RPL
specification-based detection methods, including: (i) RPL sub-
system or parameter monitoring, which relates to ASSET fol-
lowing the behavior of RPL, reflected to particular parameters,
through the Southbound interface, e.g., number of Trickle Timer
Resets, nodes’ rank values, etc.; and (ii) a number of fixed
or adaptable thresholds, indicating an abnormal RPL status,
in case they are crossed. At this point, ASSET supports four
specification-based mechanisms (i.e., Rank Validation, Node
ID Validation, Fixed Threshold F and Adaptable Threshold λ
based detection), which brief description follows.

A Decreased Rank attack is detected upon discrepancies of
nodes’ and nodes’ parents’ advertised rank via [NR] messages.
More specifically, according to an algorithm introduced in [35],
if a node’s rank, plus the RPL stabilizing parameter MinHo-
pRankIncrease [2] is lower than its parent’s rank, then the latter
is considered as an attacker. We also monitor all advertised
ranks to be higher than the sink’s rank plus the MinHopRankIn-
crease. Furthermore, the Controller detects a Clone-ID attack
via a mechanism named Node ID Validation (∆) to detect two
nodes with the same ID.

At this point of the investigation, ASSET uses configurable
fixed thresholds F to monitor crucial parameters at the Con-
troller or node level, including the number of triggered Local
and Global Repairs, and Trickle Timer Resets; whenever they
exceed the particular thresholds, the Controller is notified for
further attack detection actions.

Furthermore, we apply an adaptable threshold λ, which we
elaborate on here. Several attacks relate to fabricated control
messages causing RPL performance issues. For example, the
sink-node avoids routing loops and topology inconsistencies
by increasing the DODAG version whenever a global topol-
ogy repair occurs. Intruders can inject continuously increas-
ing DODAG versions into DIO messages they dispatch, caus-
ing the receiving nodes to reset their Trickle Timer, implement
local topology repairs, and consequently face increased com-
munication overhead. The protocol reduces the effects of such
attacks by limiting the number of Trickle Timer Resets based on
a fixed RPL threshold with the value 20. Any malformed pack-
ets, i.e., with the ’R’ flag IPv6 header option set, upon reaching
this threshold, are being dropped by the receiving node without
triggering Trickle Timer Resets.

Here, we utilize the adaptable λ(r) threshold function intro-
duced in [32], which is more effective than RPL’s fixed thresh-
old in terms of reacting to varying attack patterns. We use a
fixed threshold F at the node-level in practice, while we in-
troduced a centralized variation of the above algorithm at the

controller-level, as λ(r) = [α + β · e1−γ·r],where r =

∑n
i=1 Ei

pkts∑n
i=1 Di

pkts
,

α = 5, n is the number of nodes communicating packets, Epkts

the number of received packets with ’R’ flag set true, Dpkts the
total number of packets received. The β is chosen to lead to a
default λ(r) value of 20 (i.e., as suggested by RPL RFC [2]) and
α ensures that λ(r) cannot be zero. The value of γ, according
to the authors, should be 20 < γ < 25, i.e., we set it to value
22 in our case. Such centralized variation brings the advantage
of having a λ value characterizing the whole topology, so a lo-
cal attack incident leads to the corresponding protection of all
nodes in the network.

In our case, the adaptable threshold λ appears more conser-
vative compared to the one introduced in [32], since the r value
reduces along with the topology size. However, it produces ex-
cellent results in the particular experiments we carried out. A
possible improvement could be a normalization of the equation
concerning the number of nodes.

In a similar way, other mechanisms, monitoring particular
RPL subsystems or parameters and applying thresholds could
be implemented to detect additional attacks. Right below,
we proceed with the description of our attacker identification
mechanism introduced here.

3.4. Attacker Identification

Several attacks require identifying the intruder(s) before
their mitigation, e.g., blacklisting a node causing a Sinkhole at-
tack. In specific cases, intruder detection may be straightfor-
ward. For example, a duplicated ID could signify a Clone-ID
attack, especially if the IDs are pre-assigned. In such cases, the
recommended action could be to engage a human administrator

8



for further steps or to mark the node that appeared second as
a suspect while considering possible network delays as indica-
tions of an attack.

We propose a novel intruder identification process that can
handle multiple co-existing attacks in high accuracy for other
cases. Example usage of the ASSET platform and its GUI locat-
ing two intruders (marked with red X’s) as well as the affected
nodes (marked as red diamonds) is shown in Fig. 3.

In Algorithm 1 we detail the proposed attacker identifica-
tion process. In particular, such a process is triggered by detect-
ing an anomaly at the controller-level, i.e., by Chebyshev’s in-
equality approach (line 3). This is based on information related
to the implemented monitoring mode, e.g., ICMP statistics in
the case of essential-mode. Moreover, Algorithm 1 depicts in
line 8, how the Controller continuously monitors each node’s
data packets for irregularities.

If the K-Means algorithm succeeds into clustering the net-
work nodes into two groups with high confidence, the small-
est group will be considered under attack (line 15). It will be
further processed for subgraph(s) division, representing mul-
tiple co-existing attacks, i.e., defined as a clique. Here, we
apply Kosaraju’s algorithm [50], which locates strongly con-
nected components as a directed graph G = (V, E) in linear
time (i.e., Θ(V + E) time) [51]. In particular, we utilize the
Depth First Search (DFS) recursive algorithm from [51]. Our
main assumption is the following. In the case of multiple in-
truders, the network faces several neighborhoods with disrupted
regular operations. Hence, all affected nodes along with the
equivalent intruders form strongly connected sub-graphs. The
final step applies root nodes identification for each of the de-
tected sub-graphs, i.e., representing the attacker(s) (line 17).
The roots are defined as mother-vertices and located through
applying the mother-vertex algorithm. The mother-vertex of
a (strongly connected) graph G = (V, E), is a vertex v such
that a path from v can reach all other vertices in G. The algo-
rithm has to check if v is a mother-vertex by executing DFS one
more time. Consequently, the complexity of the algorithm is
Θ(V + E)+Θ(V + E)=Θ(V + E).

As soon as one or more intruders are identified, a black-
listing process may be initiated, blocking the attacker(s) from
being part of the RPL DODAG. In the following subsection,
we discuss the mitigation features supported by ASSET.

Figure 3: ASSET identifies two concurrent intruders.

Algorithm 1: Intrusion Detection Process
Input : Data / ICMP packets
Output: Intruder node(s) to be blacklisted

1 /* Continuously monitoring for anomalies

*/

2 while ICMP Statistics do
3 if Chebyshev(ICMP packets) then
4 /* Essential mode */

5 intruder detection(ICMP packets);
6 end
7 end
8 foreach node do
9 while new data packets do

10 intruder detection(data packets);
11 end
12 end
13 Function intruder detection(data in):
14 /* k-means creates 2 groups of nodes */

15 if (affected group = k means(data in)) then
16 affected graphs = kosaraju(affected group);
17 foreach (affected graphs g) do
18 intruder = graph mother(g);
19 end
20 end
21 End Function

3.5. Attack Mitigation

Algorithm 2: Parent selection considering blacklisted
nodes.

Input : Candidate parents p1 and p2
Output: Selected parent

1 begin
2 if (p1 && p2) in blacklist then
3 return null;
4 else if p1 in blacklist then
5 return p2;
6 else if p2 in blacklist then
7 return p1;
8 else
9 // Standard RPL-MRHOF objective

function

10 return p1.ETX ¡ p2.ETX ? p1 : p2;
11 end
12 end

The final step of ASSET intrusion detection workflow con-
cerns the attack mitigation. The selection of the appropriate
mitigation method to enforce depends on the detection algo-
rithm that precedes, i.e., corresponding to particular types of
attacks. In this context, ASSET supports the following mitiga-
tion methods:

(i) Blacklist Intruder: A large number of attacks can be mit-
igated by excluding the intruder(s) from being considered as a

9



parent by all nodes in the network. To preserve full compatibil-
ity with the RPL standard, we implemented a node blacklisting
mechanism (described in Algorithm 2) as an extension of the
default OF [16]. In detail, each node maintains a local black-
list array, which is updated by [BL] messages received by the
Controller. Blacklisted nodes are excluded from the parent se-
lection process, even if they appear as more suitable options, as
shown in Algorithm 2.

(ii) Ignore Global Repairs and Stop Local Repairs: Since
both those mandates may consume significant resources if they
are the result of an attack (e.g., DODAG Inconsistency attack),
the ASSET IDS may decide to suspend one or both of them, i.e.,
the former at the sink, and the latter at the concerning nodes,
resulting in the suspension of exchanging corresponding DIO
packets. The Ignore Global Repair mitigation method is trig-
gered by the [GR] message transmitted from the Controller to
the sink. The Stop Local Repair mitigation method is being
triggered either locally or through the [LR] message sent from
the Controller to the corresponding node(s).

(iii) Stop Trickle Timer Resets: Equivalently, the Trickle
Timer Resets cause significant control overhead since RPL con-
trol messages are being exchanged more frequently. A Stop
Trickle Timer Resets mitigation method can either be triggered
locally or from the Controller ([TT] message) allowing for the
node(s) to ignore all Trickle Timer Resets, for a particular pe-
riod.

3.6. Summary

In Table 2, we summarize how all the above IDS features
are associated with all handled attacks, including their brief de-
scriptions. More specifically, we enlist for all attacks: (i) the
detection method applied (i.e., whether it is anomaly detection
or specification based) as well as the specific detection features
utilized; (ii) the placement of the detection method, i.e., at the
controller only or also at the nodes (hybrid); (iii) the required
data input for the particular detection method; (iv) whether the
identification of an attacker is needed for its mitigation; and
(v) the mitigation method which is appropriate to this type of
attack.

The table highlights that ASSET handles diverse types of
attacks through different combinations among the supported
IDS features. We note that anomaly detection can even de-
tect unknown attacks causing communication disruptions. Fur-
thermore, new specification-based building blocks can be inte-
grated to increase its supported number of attacks further. Al-
though the IDS could be implemented with different relevant
algorithms performing even better, our selection performed de-
cently in our experimentation exercise and enough to validate
the main ASSET novelties.

Moreover, in Fig. 4, we illustrate the threat model [52, 53]
we consider in this work, i.e., which is a visualized analysis of
network security breach strategies, along with our IDS’ match-
ing mitigation techniques. To establish this risk assessment,
we begin by pinpointing the assets upon which the RPL net-
work’s mission is based. Next, we explore and rate the potential
threats in high and low risk, originating either from malicious

Figure 4: Threat Model.

actions or from known RPL weaknesses, i.e., due to RPL’s con-
strained nature. Finally, we complete the model by introducing
the IDS’s defenses serving as a shield from threats and vulner-
abilities.

4. Evaluation Results

We evaluate ASSET in line with robustness and extendabil-
ity that reflect the width of our solution, as well as accuracy
and mitigation-time that express its depth. More specifically,
we begin by discussing our evaluation methodology and, then,
we present: (i) proof-of-concept simulation results that demon-
strate attack incidents, along with ASSET’s response in terms
of detection and mitigation, as well as attacker’s identification;
and (ii) the ASSET’s robustness with an evaluation of its oper-
ation under a range of attacks triggering all discussed mecha-
nisms.

4.1. Evaluation Methodology
For the ASSET’s performance evaluation, we utilize the

Cooja emulator in Contiki OS [38]. The simulations carried out
are considering one sink node, a set of legitimate nodes, and
one attacker node. Although ASSET can potentially mitigate
attacks caused by multiple malicious nodes, we left the relevant
experimentation as future work. The network setup parameters
are described in detail in Table 3.

We only consider attacks where the intruder is part of the
active RPL topology, i.e., responds promptly to the controller’s
solicitation messages, e.g., it would be rather trivial for an IDS
with centralized components to detect and, consequently, black-
list as possible intruder a node that does not respond to such
messages. Once being blacklisted, the intruder cannot be cho-
sen as a parent-node, and hence, it cannot successfully launch
most of the RPL attacks described in Section 2.2. In practice,
we consider that the attacker node(s) are running multiple mod-
ified Contiki OS versions3 (also available under GPLv3.0) to

3https://github.com/SWNRG/contiki-malicious

10

https://github.com/SWNRG/contiki-malicious


Table 2: Attacks and designated actions supported by the IDS.

Categories Description and effects of the attack(s) DM PS DI IA AM
Topology exploitation Cause traffic loss, topology inconsistencies or significant delays

Blackhole Messages to be forwarded are dropped K C U Y B
Grayhole Messages to be forwarded are selectively dropped K C U Y B

Network attacks Capture control messages and forward or replay them maliciously
Flooding All legitimate messages are replicated Di,Ch H I,U,R N G,L,P
Replay Specific control messages (i.e., DIO) are replicated Di,Ch H I,R N G,L,P
Neighbor Replicates control messages originated from a neighboring node Di,Ch H I,R N G,L,P

Impersonation attacks Steal the identity(ies) of one or more node(s)
Clone-ID / Sybil Pretends to be a “legitimate” node by confiscating its ID ∆ C I,R Y B

RPL specific attacks Exploit specific RPL features
Decreased Rank / Sinkhole Advertises a closer to the sink position than the real one Di,Ch,RV H I,R Y B
DODAG Inconsistency Applies an inconsistent DODAG which forces nodes to probe neighbors λ(C,n) H T,R N G,L,P
DODAG Version Increases DODAG version periodically, triggering resets of network probing

timers
λ(C,n) C T,R N G,L,P

Global Repair Resets routing tables and probes all nodes, i.e, to repair topology λ(C) C R N G
Local Repair Nodes reset their local routing tables, i.e., triggering neighbors’ probing λ(C),F(n) H T,R N L,P

Legend
DM: Detection Method - Anomaly Detection [(Di)ixon, (Ch)ebyshev, (K)-Means],

Specification Based [Adaptable Threshold (λ(C:Controller, n:node)), Fixed Threshold (F),
Rank Validation (RV), Node ID Validation (∆)].

PS: Placement Strategy - (C)ontroller, (H)ybrid.
DI: Data Input - (I)CMP Statistics, (U)DP Statistics, (T)rickle Timer Resets Counter, (R)PL Control Messages.
IA: Identification of Attacker - Y/N.
AM: Attack Mitigation - (B)lacklist Node, I(G)nore Global Repairs, Stop (L)ocal Repairs, Sto(P) Trickle Timer Resets.

Table 3: Network setup parameters.

Parameter Value Notes
Network Layer RPL Storing mode
MAC Layer 802.15.4
Implementation Contiki 3.0 - Cooja
Sink Node(s) 1 Serial Port Connection
Mote Type Zolertia Z1
Nodes Placement Random
Number of nodes 25 or 50
Area 800 m × 800 m
Simulated Time 3 hr 10,800,00 ms
Data (UDP) Transmission Period (P) 5 min Unless otherwise stated
ICMP Probing Frequency 5 min Avoiding zero probes
Packet Size 70 B Average size
TX Range 50 m
Interference Range 50 m
TX/RX Success Ratio 100%
Trickle Timer Duration 4 ms-17.5 min Contiki RPL defaults

execute one or more attacks in conjunction. Right afterward,
we present proof-of-concept results demonstrating ASSET’s op-
eration under various attacks.

4.2. Proof-of-concept Results

To evaluate the different aspects of ASSET and reveal the
potential of its mechanisms, we conducted several experiments,
as presented below. Those proof-of-concept experiments fo-
cus on demonstrating ASSET’s functionalities along with the
required width and depth. Comparing ASSET with other simi-
lar solutions is considered as a future work since (i) we have to
identify common use-cases in terms of required security level
and affordable control overhead or processing cost; and (ii) we
have to determine the type of involved mitigation action and
its impact since this determines the communication or perfor-
mance issues that a false positive can cause.

Figure 5: An RPL network under Decreased Rank attack.

4.2.1. Detection Mechanisms Evaluation
The first proof-of-concept simulation is associated with

anomaly detection mechanisms of ASSET. As illustrated in
Fig. 5, we consider a network with 50 nodes (marked with yel-
low) randomly placed around the sink-node (the green one),
while an intruder (ID=54, purple color) compromises the net-
work by unleashing a Decreased Rank attack advertising a
lower rank value than all other legitimate nodes in its wireless
coverage (i.e., the green range). As a result, most of the nodes
within range, i.e., nodes with ID 27, 32, 33, 42 and some others
around it, i.e., nodes with ID 4, 17, 44, increase the number of

11



ICMP packets exchanged, in their effort to recalculate paths to
the sink.

The Dixon-Q test mechanism in every node detects the
anomaly in the number of ICMP messages sent and received,
as shown by the PANIC entries in the log file illustrated in the
right-hand window in Fig. 5. In our simulation, we configure
the Dixon-Q window-size as wsize = 7. Table 4 shows for each
of the above nodes that the latest of seven values, regarding both
the incoming (RECV) and outgoing (SEND) ICMP packets, is
an outlier, causing seven nodes to dispatch the [AD] message at
t0 (nodes within the attacker’s range are with gray background
in Table 4). Since the number of nodes sending a [AD] message
exceeds the threshold of three, ASSET activates controller-level
anomaly detection by Chebyshev’s inequality mechanism for
further investigation of the attack instance, i.e., attacker’s de-
tection and mitigation.

Table 4: Node-level anomaly detection: Dixon-Q test, wsize = 7.

ICMP NODE t6 t5 t4 t3 t2 t1 t0

SEND

4 4 4 4 5 4 4 18
17 5 2 5 3 3 4 15
27 5 3 6 4 4 5 19
32 4 4 4 3 6 4 19
33 7 4 6 5 7 7 17
42 8 7 6 6 9 8 13
44 3 5 3 3 4 5 8

RECV

4 3 4 3 1 5 4 39
17 12 5 4 5 5 4 42
27 10 6 5 4 4 6 82
32 9 4 2 3 3 3 64
33 11 6 5 5 7 6 91
42 6 6 5 5 9 8 58
44 4 3 3 7 3 3 20

 94

 95

 96

 97

 98

 99

 100

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 02:45 03:00

C
o
n
tr

o
l 
O

v
e
rh

e
a
d
 (

%
)

Time (h)

Attack

Detected

Mitigated

RPL
ASSET + RPL

Figure 6: Control overhead over time for a combined Decreased Rank and
Blackhole attack on a network of 25 nodes.

4.2.2. Control Overhead & Power Consumption
The holistic approach provided by ASSET is illustrated in

Fig. 6 which is the outcome of our second proof-of-concept

 2.05

 2.1

 2.15

 2.2

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 02:45 03:00

P
o
w

e
r 

C
o
n
s
u
m

p
ti
o
n
 p

e
r 

N
o
d
e
 (

m
W

)

Time (h)

RPL
Slim Mode

Essential Mode
Full-function Mode

Figure 7: Average power consumption of nodes under ASSET’s different modes
of operation.

simulation. In practice, we simulated for three hours (x-axis) a
multi-hop network with 25 nodes randomly placed around one
sink, considering a combination of Decreased Rank and Black-
hole attacks, and we observe the network’s control overhead to
validate our intuition regarding the impact of attacks over it.
Fig. 6 shows that attacks are launched at 01:20 hour (vertical
red line), detected at 01:32 hour (vertical yellow line), and mit-
igated at 01:47 hour (vertical green line).

We chose a typical combination of attacks. The intruder-
node discards data packets, e.g., UDP, once it successfully de-
ceives several nodes that choose it as a routing node (i.e., par-
ent) for their packets. Fig. 6 does imprint the impact of the De-
creased Rank attack, which precedes the Blackhole one. Once
the attack has taken place, the Dixon-Q test detects outliers in
control packets on six nodes at 01:25 hour and three more nodes
at 01:30. These nodes notify the Controller with [AD] mes-
sages, activating Chebyshev’s inequality mechanism for a more
fine-grained detection. For this purpose, apart from a [NP]
message, nodes also dispatch their latest chosen parent-node,
i.e., ICMP statistics ([IS] messages), node’s current rank ([NR]
messages), and available neighbors ([NN] messages), assisting
the Controller in identifying the intruder. Once the intruder is
identified, the Controller at 01:32 dispatches a [BL] message to
all nodes as a mitigation action. Fig. 6 provides evidence that,
at 01:47 hour, the network graph is concise again, i.e., network
nodes selected legitimate parents, after excluding the attacker
as a candidate parent.

Regarding power consumption, we conducted the same ex-
periment under four different modes of operation, i.e., stan-
dard RPL compared with the three operation modes of ASSET
(i.e., slim-, essential-, full-function-modes). The results are
presented in Figure 7, where after the anticipated initial power
“spikes” until the network settles down, the power consumption
is minimal, with only full-function mode consuming slightly
more energy. In total, compared with RPL, the slim-mode con-

12



sumes 0.18 percent more power per node, the essential mode
consumes 0.71 percent, while the full-function mode consumes
1.54 percent more energy. Compared to other similar solutions,
SVELTE [43] has a 30 percent overhead compared to RPL.

4.2.3. ASSET’s modes of operation
Moreover, Fig. 6 confirms that slim-mode operation of

ASSET does not overload the network. In the period from
the beginning of the simulation until the attacks (vertical red
line), ASSET operates with the minimum number of monitor-
ing messages, i.e., [NP] messages from nodes to report par-
ents’ changes and/or [SP] messages from the Controller to the
nodes, requesting missing information regarding their parents.
The purple curve, corresponding to the RPL network with the
IDS functionality, is only slightly higher, i.e., 6.28 percent on
average in our simulation, compared to the blue line, represent-
ing the standard RPL operation.

The full-mode operation of ASSET succeeds in the at-
tacker’s identification and mitigation at the cost of increased
control overhead. However, this overhead remains lower, 49.87
percent on average, than when the RPL protocol is left un-
shielded. Indeed, within the time frame between the red and
green verticals, node and controller-level anomaly detection are
taking place, additional messages([IS], [NR], and [NN]) are
sent to the Controller, who then activates the three steps de-
scribed in Section 3.4 to identify the attacker. However, despite
these demanding processes, ASSET controls network topology
disruptions and updates, moderating Local and Global Repair
([LR] and [GR] messages) and, thus, holding the peak in the
purple curve.

Finally, mitigating the attack brings a 95.96 percent bene-
fit to the network in control overhead. In the period from the
attacks’ mitigation (vertical green line) until the end of the sim-
ulation, ASSET manages to establish a new DODAG consisted
of legitimate nodes while allowing the network to continue its
mission, i.e., data gathering.

4.2.4. Attacker’s Identification
Our last proof-of-concept outcome elaborates on the at-

tacker’s identification mechanism. In Fig. 8, in a three-hour
run, we operate another random, multi-hop topology (illustrated
on the up-left part), where 25 nodes (the yellow ones) are un-
der Blackhole attack by the purple node (ID=27), while they
route their data packets to the sink (green node). The intruder is
placed within the direct reach of six nodes (ID 2, 6, 7, 10, 15, 18)
and presents a legitimate behavior until 01:20 hour when it
starts dropping all received data packets in their routing to the
sink (including the attacker’s own ones to make the scenario
more challenging).

In a network with scheduled UDPs and a pre-defined dis-
patching period, the impact of a Blackhole attack is to differen-
tiate affected by non-affected nodes in terms of the UDP packets
number arrived at the sink. Indeed, the K-Means algorithm run-
ning in the Controller has successfully divided the network into
two distinct groups, i.e., clusters 0 and 1 (bottom left window),
also illustrated in the right part of Fig. 8, i.e., cluster 0 contains
the yellow nodes along with the sink (non-affected as indicated

Figure 8: An RPL network under Blackhole attack.

by the high number of UDP packets), while cluster 1 shown in
red, consists of the affected nodes (due to the low number of
UDP packets).

A closer look at the affected sub-graph reveals that only
nodes 6, 7, and 18 within the intruder’s coverage are affected by
the attack. In contrast, the other three ones, i.e., 2, 10 and 15,
are not affected because they do not select the intruder as a par-
ent (indeed, the parent of the nodes 2, 15 is node 26, while the
parent of node 10 is node 23). Simultaneously, nodes 3, 13 and
5, 9, 17 select as a parent the affected nodes 18 and 6, respec-
tively, and consequently are also influenced by the Blackhole
attack, although they are not within the intruder’s coverage.

At this step, it is crucial to distinguish among cluster mem-
bers to identify the malicious one. K-means feeds Kosaraju’s
algorithm with the red sub-graph. Kosaraju then defines one
sub-graph (or more, in case of multiple attacks) and passes the
graph to the mother node algorithm. The algorithm recognizes
node 27 as the “root” of this sub-graph, identifying this ID
as the malicious node. In our simulation, the attack begins at
01:20, and our system recognizes the attacker at 01:47. Right
afterward, the Controller blacklists this node to not be selected
as a parent node.

In this scenario, we noticed that leaving unmitigated such
an attack reduces the packets that the sink successfully received
by as much as 17.3 percent. Our system helps the network lose
only 5.7 percent of the packets that would eventually arrive at
the sink in a non-attack case.

Next, we carry on discussing the results on the robustness
of ASSET.

4.3. Robustness Results

Our results regarding ASSET’s robustness are summarized
in Table 5 and show that our proposed system can handle 13 at-
tacks. We excluded from our analysis Sinkhole, Neighbor, and

13



Table 5: ASSET’s Robustness Evaluation.

Time (180 min)51015202530354045505560 5 101520 25 30354045505560 5 1015202530354045505560
Time-slot1 2 3 4 5 6 7 8 9 10111213141516 17 18192021222324252627282930313233343536

No Attack DM
Chebyshev’s Inequality Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dixon-Q Test Di 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Attack
Blackhole K 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 2 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Grayhole K 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 0 0 0 0 0 0 0 0 0 1 0
Decreased Rank RV 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 5 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Decreased Rank Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DODAG Version λ(C, n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1516 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DODAG Inconsistency λ(C,n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DODAG Inconsistency Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Global Repair λ(C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Local Repair λ(C),F(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flooding Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 9 10 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Replay Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1112 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Clone-ID ∆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Attack initiation Ch: Chebyshev’s Inequality, Di: Dixon-Q Test, K: K-Means
False Positives λ: Adaptable Threshold, F: Fixed Threshold, RV: Rank Validation, ∆: Node ID Validation

Attack Detection C: Controller, n: node
Attack Mitigation

Sybil attacks due to their high similarities with Decreased Rank,
Replay, and Clone-ID attacks, respectively. Moreover, De-
creased Rank and DODAG Inconsistency attacks appear twice
in the Table to highlight how alternative mechanisms can han-
dle them.

Each row of Table 5 represents a three-hour simulation, di-
vided into 5 min timeslots, regarding the same 25-nodes’ net-
work. The first two rows refer to Chebyshev’s and Dixon’s
operations in case of non-attack. In contrast, each of the rest
rows represents a type of attack (1st column), occurring at the
80th min, along with the detection mechanism (2nd column) in
place.

Regarding basic implementation details and configurations,
in Blackhole attack, the malicious node suspends forwarding
of all UDP data packets traveling towards the sink. In con-
trast, for Grayhole the attacker decides to forward or not the
received data packet based on a fair coin toss. In Decreased
Rank attack a malicious node is advertising a fake rank cal-
culated after subtracting four times the RPL’s parent switch-
ing threshold (MinHopRankIncrease) from the attacker’s actual
rank (i.e., fake rank = actual rank - 4*MinHopRankIncrease).
For DODAG Version attack, an adversary keeps sending DIO
messages with increasing version numbers, triggering contin-
uous Trickle Timer Resets, in addition to Global and Local
Repairs. DODAG Inconsistency attack is applying erroneous
headers in RPL messages [32] triggering also Trickle Timer Re-
sets, Global and Local Repairs. Global or Local Repair attacks,
are replicated with a DODAG Inconsistency attack. Flood-
ing attack was implemented with the attacker continuously dis-
patching forged RPL & data packets, limited by Cooja process-
ing capabilities since a high communication load crashes the
(emulated) serial port. We implemented the Replay attack in a
similar way to Flooding attack by assuming an adversary con-

tinuously re-sending the RPL messages it receives. Finally, the
Clone-ID attacker duplicates existing RIME, MAC, and/or IPv6
addresses, i.e., leading to duplicated node IDs.

The specific attack detection mechanism employed for each
attack is also indicated in Table 5. Chebyshev’s inequality’s
and Dixon’s settings are wsize = 8, p1 = 0.95 and wsize =

5, con f idence = q99, respectively. The configuration of thresh-
old F was set to 10 (half of the one proposed by RPL, assuming
a hostile environment), and adaptable λ is implemented as de-
fined in Section 3.3.2. These mechanisms operate both on the
node and Controller side, depending on the attack type. K-
Means confidence was set to 0.1.

The central cells in Table 5 indicate the number of nodes
signaling an attack at the given timeslot, based on the mecha-
nism referenced in the particular row. We indicate with bold
the time-slot that attacks start, e.g., we selected slot 16 on 80th

min for all different cases. We color differently the cells where
the attacks are detected (gray) and mitigated (dark gray-white
fonts), as well as those reflecting false positives (light gray).
Single nodes cause a few false positives. As previously dis-
cussed, an event is considered an attack when at least three
nodes declare its detection, except for Clone-ID and Global
Repair attacks, because the corresponding mechanisms do not
cause false positives, e.g., the Global Repair attack is being
handled at the sink only. Moreover, regarding Decreased Rank
detection, although four rank inconsistencies are reported in
time-slot 18, the dedicated RV mechanism needs to mandate
the nodes to enable full-function mode to send all neighbor’s
data (i.e., [SN] message) and compare all declared ranks for
discrepancies before identifying the attacker.

We consider an attack as mitigated when the proper mit-
igation action is enforced, independently of the time it takes.
An indication of the latter appears in Table 5 through the de-

14



clining number of nodes signaling the attack immediately after
the mitigation timeslots. Once we described our notation, we
proceeded with our observations based on each row’s results.

The first two rows consider simulations without attacks to
highlight the overhead of ASSET during regular system opera-
tion. On the one hand, Chebyshev’s inequality did not produce
any false positives. However, we had some rare false positives
with more relaxed confidence levels (e.g., p1 = 0.90) without
triggering attack detection. On the other hand, the Dixon-Q test
faces 5 cases of single-node detecting outliers, e.g., node 22nd

on time-slots 23, 24, and 25. We also note that Dixon-Q de-
tects some infrequent outliers after an attack is mitigated since
the network settles down progressively. This causes a minor
communication overhead increase in the particular nodes, i.e.,
enabling the transmission of ICMP statistics to the Controller,
and highlights that ASSET’s control overhead adaptability as-
pects require further investigations, which we consider as future
work.

Blackhole and Grayhole attacks impact data rather than
control packets. We employ the K-Means algorithm, which
continuously clusters the nodes into two groups based on their
UDP packets arrived at the sink. We consider a true positive
whenever it appears a small cluster with nodes that present a
low number of UDP packets, i.e., assuming that the attack does
not impact most nodes. Consequently, the sporadic false posi-
tives do not cause any issue. We noticed that topology-size and
severity of attack impact false positives and attack mitigation
time. For example, it takes three more timeslots for ASSET to
mitigate the less severe Grayhole attack, compared to Black-
hole. Such issues deserve a dedicated analysis.

Regarding the Decreased Rank attack, we provide results
for both Rank Validation and Chebyshev mechanisms. The for-
mer needs four timeslots until its mitigation time, while the
latter can detect the attack in just two timeslots. However,
Chebyshev is not equipped to mitigate this particular attack.
In this execution, RV is characterized by two false positives,
before and after the attack, without impacting the attack de-
tection process. These results highlight the need for dedicated
specification-based mechanisms.

DODAG Version attack is mitigated within two timeslots
because of frequent DIO packets with increasing DODAG ver-
sions. In the first and second time-slots, the adaptable λ thresh-
olds are being crossed at the node- and controller-levels, respec-
tively, i.e., the latter confirming the attack detection. We have
an equivalent result for DODAG Inconsistency attack since their
outcome is similar, given the attacker’s same spatial position.
Here, we mitigate the attack’s outcome, i.e., suspend resetting
Trickle Timer, Global, and Local Repairs since identifying the
attacker requires additional software or equipment [25], consid-
ered out of the paper’s scope.

We also provide the outcome of Chebyshev’s mechanism
in the case of DODAG Inconsistency attack, highlighting its
inability to detect the latter and the advantages of ASSET’s
specification-based mechanisms. We note that Chebyshev with
a lower sensitivity (e.g., p1 = 0.90 and the same wsize) can
detect the attack at time-slot 20 and mitigate it at 21, i.e., later
than the adaptable λ. Such aspects highlight that anomaly de-

tection and specification-based mechanisms can be operating in
a parallel manner, complementing each other.

In the case of Global Repair attack, ASSET needs three
time-slots to mitigate it (i.e., the sink ignores further Global
Repair mandates). This process involves the communication
of nodes with the sink and the follow-up involvement of the
Controller. The mitigation time is shorter by one timeslot for
Local Repair attacks, where nodes signal an attack as soon as
their fixed threshold F is reached, which is confirmed by the
Controller with its adaptable threshold λ.

It takes four timeslots for ASSET to mitigate both Flood-
ing and Replay attacks because of the gradual control traffic in-
crease among the nodes. One node detects an outlier for the Re-
play attack, at 28th timeslot, which is ignored by the Controller.
Mitigation for both attacks involves disabling Global and Lo-
cal Repairs, as well as Trickle Timer Resets. Since Cooja faces
stability issues with these two attacks, conducting these exper-
iments in a test-bed environment and studying the network’s
behavior under real network conditions is another open issue.

Clone-ID attackers are rapidly identified by the Controller
with 100 percent accuracy, due to the centralized nature of AS-
SET, i.e., nodes with duplicated IDs are immediately detected
and blacklisted. Sybil attacks will also be equivalently miti-
gated.

The above results demonstrate that ASSET, under the given
scenario, configuration settings and network conditions: (i) can
detect 13 attacks (i.e., including Sinkhole, Neighbor, and Sybil
attacks that exhibit a very similar behavior with Decreased
Rank, Replay, and Clone-ID, respectively) without false posi-
tives in attack detection, i.e., we noticed only some rare false
alarms from nodes to the Controller; (ii) handles effectively the
infrequent false alarms due to the requirement that at least three
nodes should signal an attack before a mitigation action being
triggered; (iii) employs multiple attack detection mechanisms,
including three anomaly detection and four specification-based,
contributing to both width and depth of attack detection; (iv)
mitigation time depends on the attack type, severity, and behav-
ior; and (v) manages to identify and exclude the attackers for
Blackhole, Grayhole, Decreased Rank, and Clone-ID attacks,
while for the rest of them it mitigates the outcome of the attack,
i.e., the attack may still be present.

Due to our experiments’ high complexity, we consider a
more thorough investigation of ASSET’s performance, includ-
ing its statistical evaluation and comparison with other similar
solutions, as future work. However, we argue that the current
results suffice to confirm ASSET’s novelties, as defined in the
paper.

4.3.1. Open ASSET vulnerabilities
Here, we discuss several ASSET’s security vulnerabilities

that are outside the scope of this paper and deserve further in-
vestigation. These open challenges can be summarized as fol-
lows.

For simplicity, we currently assume that ASSET Controller
and corresponding communication (e.g., packets carrying mea-
surements from nodes to the Controller) is safe and not tam-
pered. For example, attacks oriented to Software-Defined IoT

15



solutions could be relevant to ASSET, e.g., targeting a central-
ized Controller4. Consequently, there is a need for hardening
the related security. Several techniques could be potentially ap-
plied, including Byzantine Fault Tolerance [54], n-versioning,
or secure tokens and enclaves. Moreover, a sophisticated attack
could possibly tamper with the measurements traveling to the
sink to “hide” an ongoing attack or to work around an ASSET
mechanism. This may be challenging for ASSET since it oper-
ates many attack detection mechanisms in parallel, i.e., another
one may detect the attack. We consider such aspects comple-
mentary with our solution but complicated enough to deserve an
independent study. Furthermore, our proposal may be vulnera-
ble to more sophisticated attacks than the considered ones. For
example, neighboring nodes may collude to exclude nodes from
the graph or apply a Clone-ID attack after collapsing the node to
be duplicated. In the latter case, reputation-based mechanisms
can be implemented as a scheme with multi-path duplication of
messages, i.e., to verify a node’s compliance. Although this is
always the case with IDSs, we consider ASSET as a descent so-
lution to many different attacks, in contrast to the related works.

5. Related Works

In the context of RPL, the associated IDSs gain popularity
following the protocol’s evolution [7, 12, 14, 55]. Literature
classifies these RPL-related IDSs according to two main crite-
ria [56]: (i) the detection method they employ, and (ii) their
placement strategy. Based on the detection method, the IDSs
are distinguished in: signature detection, anomaly detection,
RPL specification-based systems, while hybrid detection IDSs
combine at least two of the aforementioned categories. Regard-
ing their placement strategy, RPL-related IDSs are classified
into: centralized, distributed and hybrid placement systems; the
latter that blend the rationale of centralized and distributed by
keeping the “heavy” tasks for the root or central node(s) and
delegating the lightweight ones to the rest.

In our survey paper published in 2021 [14], we have investi-
gated the 22 most recently introduced RPL-related IDSs in the
literature (2013 − 2020) and conclude the outcome that com-
bining detection methods as well as placement strategies brings
positive results. The most apparent benefit regards to the num-
ber of attacks the system detects; this ranges from three to five
(3 to 5) for the hybrid detection systems [58, 44] and goes up
to eight (8) for the full hybrid ones [43, 59]. Table 6 provides a
brief comparative overview of hybrid systems, which are found
the most advanced of the recent literature [14] and relevant to
our proposed one.

Further benefits include the ability of some systems to iden-
tify the attacker [59, 57] and/or mitigate the attack [43, 59], the
extendability as a feature that enables the IDS evolution towards
detecting new attacks, as well as the detection accuracy rate in
conjunction with low resource overhead, especially when the

4Although ASSET adopts ideas originating from the SDN world, the scope
of this paper covers RPL-related attacks only, rather than the security of SDN
IoT systems.

Table 6: Comparative overview of the hybrid IDSs related to our work.

IDS DM EE NA E IA AM
[43] AD, SB, SD S 7 Y Y WE
[57] AD, SB S 3 Y Y N
[58] AD, SD S 5 – N N
[44] AD, SD S 3 Y N N
[59] AD, SD C 8 Y Y MF

ASSET AD, SB S 13 Y Y MM
Legend
DM: Detection Method - Anomaly Detection (AD), Specification-Based
Detection (SB), Signature Detection (SD).
EE: Evaluation Environment - (S)imulation, (C)onceptual.
NA: Number of Attacks.
E: Extendability - Y/N.
IA: Identification of Attacker AM: Attack Mitigation - White List Exclu-
sion (WE), Mini Firewall (MF), Multiple Methods (MM).

developed mechanisms are appropriately located both in cen-
tral and distributed nodes.

In particular, appropriately tuning the parameters of
SVELTE [43] can offer as much as 100 percent of detection ac-
curacy and zero false positives. However, the system trades its
advantages with resource requirements regarding storage, the
signatures’ repository, and computational power for anomaly
detection algorithms. In comparison, Bostani et al. [57] show
an average of 93.3 percent accuracy with less than 3.3 false pos-
itives for multiple runs.

Game Theory IDS [58] reports an average of 98.6 percent
accuracy and less than 2.5 percent of false positives for a vari-
ety of setups. In comparison, CHA–IDS [44] shows an accuracy
within 85.2−100 percent and up to 0.058 percent false positives,
in the worst case. Although they keep a good balance between
accuracy, false positives, and overhead, they neither deal with
the attacker’s identification nor with mitigation actions. These
limitations probably stem from the fact that Game Theory IDS
employs a distributed placement strategy not taking advantage
of the results of a central analysis, and vice versa, CHA–IDS is
a centralized system, which does not exploit distributed mech-
anisms. Indeed, in the case of [59], signature and anomaly de-
tection are used in combination exploiting, further, the rationale
of a hybrid placement strategy. The system brings a high score
of as many as 8 attacks detected.

Comparing the above hybrid systems is a challenging and
not straightforward task since it is associated with the consid-
ered use-case in terms of required security level and reasonable
control overhead or processing cost, and it depends on how an
IDS covers the addressed attack(s). Our literature study reveals
that different approaches span from simulating all or some of
the attacks to conceptually supporting coverage for all or a sub-
set of the attacks under study. Indicatively, authors in [59] intro-
duce a full-conceptual framework, where they discuss but not
evaluate their IDS. Also, in the case of simulation approaches,
differences concern the simulation environments and the met-
rics used to assess the IDSs’ performance. Among different
approaches, Contiki Cooja [38] is a common choice; it is also
adopted in our work.

16



Another challenging issue considering comparison is the
lack of a common framework for IDS evaluation in real en-
vironments, i.e., test-beds. This challenge is reflected in 3rd
column of Table 6 which shows that all approaches with evalu-
ation results use simulation. Our previous experience with test-
beds participating in the FED4FIRE [60] and GENI [61] federa-
tions, in the context of 5G network slicing research [62, 63, 64],
shows that it would be interesting, but also very challenging,
to deploy complete IDSs in test-beds for evaluation reasons
and address possible issues that arise. Currently, the Shar-
ing Artifacts in a Cybersecurity Community Hub (SEARCCH)
project [65] offers a facility that provides validation, repeatable
sharing, and reuse of security-related research results. A rele-
vant initiative for IoT security could establish a common frame-
work where open-source IDS code could be released and com-
paratively evaluated, e.g., in a common environment with the
same methodology and evaluation scenarios.

In this work, we exploit observations derived by the re-
cent bibliography and develop our novel system, which is by-
design a softwarized IDS in the sense that it assigns lightweight
tasks, such as monitoring and first-place detection, to the con-
straint end-nodes and transfers the demanding tasks to central
premises. Besides, ASSET follows a modular architecture that
allows adaptations and/or extendability. It combines anomaly
and specification-based detection and, to the best of our knowl-
edge, is the most robust system compared to its peers. It de-
tects 13 RPL-related attacks, supports attacker’s identification,
and offers several mitigation actions depending on the attack
detected.

Conclusion

ASSET’s evaluation has shown that handling attacks against
the RPL protocol is challenging and highly dependent on the
implemented mechanisms targeting one or more specific at-
tack(s). Moreover, transferring node-level functions to the cen-
tralized infrastructure is more stable and accurate and provides
new capabilities to the network administrators. Some attacks
can be handled with high accuracy, while some can be miti-
gated, leaving the identification of the intruder as an open is-
sue. In addition, inspired by the softwarization paradigm, by
offering centralized intelligence and extendability, ASSET is an
ideal platform for new mechanisms and tools to be tested in the
areas of anomaly detection and SDN-like solutions for RPL and
the IoT in general.

ASSET exhibits the following advantages: (i) a holistic
workflow handling 13 well-known RPL-related attacks; (ii)
3 anomaly and 4 specification-based attack detection mecha-
nisms, operating both at node and controller-level and exhibit-
ing a low number of false positives; (iii) a set of alternative mit-
igation actions and an original attacker identification process;
and (iv) an adaptable control and monitoring protocol, trading
communication overhead for attacker detection accuracy.

Our next steps include the following aspects: (i) to further
improve (i.e., in width and depth) the attack detection and mit-
igation, the attacker identification mechanisms, as well as the
control channel adaptability, including employing change-point

analysis for anomaly detection [66, 67], (ii) to conduct exten-
sive experimentation with multiple attacks (also co-existing),
attackers, topology structures and sizes, experiment configura-
tions, including based on real IoT test-beds, to accurately mea-
sure the implications of ASSET to network latency, among oth-
ers, (iii) to incorporate a separate control channel with a long-
range interface, inspired by [68, 69], which can significantly
improve ASSET’s operation, in terms of communication over-
head and attack mitigation capability, (iv) to assess the node’s
mobility and wireless interference impact and how they can af-
fect attack detection since it can also increase control overhead,
e.g., they may cause false positives in anomaly detection.

Acknowledgements

Kyriakos Vougioukas provided the testing framework5 for
Dixon-Q and Chebyshev’s Inequality tests.

References

[1] M. Wollschlaeger, T. Sauter, J. Jasperneite, The future of industrial com-
munication: Automation networks in the era of the internet of things &
industry 4.0, IEEE Ind. Electron. Mag. 11 (1) (2017) 17–27.

[2] T. Winter, et al., RPL: IPv6 routing protocol for low-power and lossy
networks, RFC 6550 (2012) 1–157.

[3] O. Gaddour, A. Koubâa, RPL in a nutshell: A survey, Comput. Netw.
56 (14) (2012) 3163–3178.

[4] G. Violettas, S. Petridou, L. Mamatas, Evolutionary Software De-
fined Networking-Inspired Routing Control Strategies for the Internet of
Things, IEEE Access 7 (2019) 132173–132192.

[5] G. Violettas, S. Petridou, L. Mamatas, Routing under heterogeneity &
mobility for the Internet of Things: a centralized control approach, in:
IEEE Global Commun. Conf. (GLOBECOM), 2018, pp. 1–7.

[6] A. Mayzaud, R. Badonnel, I. Chrisment, A Taxonomy of Attacks in RPL-
based Internet of Things, Int. J. Netw. Secur. (2016).

[7] A. Verma, V. Ranga, Security of RPL based 6LoWPAN Networks in the
Internet of Things: A Review, IEEE Sens. J. 20 (11) (2020) 5666–5690.

[8] P. Kamgueu, E. Nataf, T. Ndie, Survey on RPL enhancements: a focus on
topology, security and mobility, Comput. Commun. 120 (2018) 10–21.

[9] J. Granjal, E. Monteiro, J. Silva, Security for the internet of things: a
survey of existing protocols and open research issues, IEEE Commun.
Surv. Tutor. 17 (3) (2015) 1294–1312.

[10] M. Landsmann, M. Wahlisch, T. Schmidt, Topology authentication in rpl,
in: 2013 IEEE Conf. on Comput. Comm. Workshop (INFOCOM WK-
SHPS), pp. 73–74.

[11] A. Arena, et al., Evaluating and improving the scalability of RPL security
in the Internet of Things, Comput. Commun. (2020).

[12] A. Raoof, A. Matrawy, C.-H. Lung, Routing attacks and mitigation meth-
ods for RPL-based internet of things, IEEE Commun. Surv. Tutor. 21 (2)
(2018) 1582–1606.

[13] P. Perazzo, et al., An implementation and evaluation of the security fea-
tures of RPL, in: Int. Conf. on Ad-Hoc Netw. and Wireless, Springer,
2017, pp. 63–76.

[14] G. Simoglou, et al., Intrusion Detection Systems for RPL Security: A
Comparative Analysis, Comput. Secur. 104 (2021) 102219.

[15] P. Pongle, G. Chavan, A survey: Attacks on RPL & 6LoWPAN in IoT,
in: 2015 IEEE Int. Conf. on pervasive computing (ICPC), pp. 1–6.

[16] O. Gnawali, P. Levis, The minimum rank with hysteresis objective func-
tion, RFC 6719 (2012).

[17] O. Gaddour, et al., OF-FL: QoS-aware fuzzy logic objective function for
the RPL routing protocol, in: 2014 IEEE 12th Int. Symp. on modeling and
optimization in mobile, ad hoc, and wireless netw. (WiOpt), pp. 365–372.

5https://github.com/boygioykaskyriakos/outliers platform

17

https://github.com/boygioykaskyriakos/outliers_platform


[18] T. Clausen, U. Herberg, M. Philipp, A critical evaluation of the IPv6 rout-
ing protocol for low power and lossy networks (RPL), in: 2011 IEEE 7th
Int. Conf. on Wireless and Mobile Computing, Networking and Commun.
(WiMob), pp. 365–372.

[19] J. Tripathi, J. C. de Oliveira, J. P. Vasseur, A performance evaluation study
of RPL: Routing Protocol for Low power & Lossy Networks, in: 2010
44th Annual Conf. on Inf. Sciences and Syst. (CISS), pp. 1–6.

[20] P. Pongle, G. Chavan, Real Time Intrusion and Wormhole Attack Detec-
tion in Internet of Things, Int. J. Comput. Appl. 121 (9) (2015).

[21] D. Airehrour, S. Ray, Secure routing for internet of things: A survey, J.
Netw. Comput. Appl. 66 (2016) 198–213.

[22] K. Chugh, L. Aboubaker, J. Loo, Case study of a black hole attack on
LoWPAN-RPL, in: Proc. of the Sixth Int. Conf. on Emerging Secur. Inf.,
Syst. and Technol. (SECURWARE), 2012, pp. 157–162.

[23] L. Wallgren, S. Raza, T. Voigt, Routing Attacks and Countermeasures in
the RPL-Based Internet of Things, Int. J. Distrib. Sens. Netw. 9 (8) (2013)
794326.

[24] A. Le, et al., The impacts of internal threats towards routing protocol
for low power and lossy network performance, in: 2013 IEEE Symp. on
Comput. and Commun. (ISCC), pp. 000789–000794.

[25] P. Perazzo, et al., DIO suppression attack against routing in the Internet
of Things, IEEE Commun. Lett. 21 (11) (2017) 2524–2527.

[26] T. Umer, et al., Information and resource management systems for inter-
net of things: Energy management, communication protocols & future
applications, Future Gener. Comput. Syst. 92 (2019) 1021–1027.

[27] J. R. Douceur, The sybil attack, in: Int. workshop on peer-to-peer systems,
Springer, 2002, pp. 251–260.

[28] A. Le, et al., The Impact of Rank Attack on Network Topology of Rout-
ing Protocol for Low-Power and Lossy Networks, IEEE Sens. J. 13 (10)
(2013) 3685–3692.

[29] W. Xie, et al., Routing Loops in DAG-Based Low Power and Lossy Net-
works, in: 24th IEEE Int. Conf. on Adv. Inf. Networking and Appl., 2010,
pp. 888–895.

[30] A. Kamble, V. Malemath, D. Patil, Security attacks and secure routing
protocols in RPL-based Internet of Things: Survey, in: Int. Conf. on
Emerging Trends Innovation in ICT (ICEI), 2017, pp. 33–39.

[31] D. Airehrour, J. A. Gutierrez, S. K. Ray, SecTrust-RPL: A secure trust-
aware RPL routing protocol for Internet of Things, Future Gener. Comput.
Syst. 93 (2019) 860–876.

[32] A. Sehgal, et al., Addressing DODAG inconsistency attacks in RPL net-
works, in: 2014 IEEE Global Inf. Infrastructure and Netw. Symp. (GIIS),
pp. 1–8.

[33] A. Aris, S. F. Oktug, S. Berna Ors Yalcin, RPL version number attacks:
In-depth study, in: NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Manage. Symp., pp. 776–779.

[34] A. Mayzaud, et al., A study of RPL DODAG version attacks, in: IFIP Int.
Conf. on Auton. infrastructure, Manage. and Secur., Springer, 2014, pp.
92–104.

[35] A. Le, et al., A specification-based IDS for detecting attacks on RPL-
based network topology, Inf. 7 (2) (2016) 25.

[36] T. Theodorou, et al., A Multi-Protocol Software-Defined Networking So-
lution for the Internet of Things, IEEE Commun. Mag. 57 (10) (2019)
42–48.

[37] G. Violettas, et al., An experimentation facility enabling flexible network
control for the Internet of Things, in: IEEE 2019 Conf. on Comput. Com-
mun. Workshops, pp. 992–993.

[38] A. Dunkels, B. Gronvall, T. Voigt, Contiki - a lightweight and flexible
operating system for tiny networked sensors, in: 29th Annual IEEE Int.
Conf. on Local Comput. Netw., 2004, pp. 455–462.

[39] The WEKA workbench, in: I. H. Witten, et al. (Eds.), Data Mining (4th
ed.), Morgan Kaufmann, 2017, pp. 553–571.

[40] GraphStream, https://github.com/graphstream (2018).
[41] S. Schaller, D. Hood, Software defined networking architecture standard-

ization, Comput. Stand. Interfaces 54 (2017) 197–202.
[42] A. Dutot, et al., GraphStream: A Tool for bridging the gap between Com-

plex Systems and Dynamic Graphs, EPNACS’2007 63.
[43] S. Raza, L. Wallgren, T. Voigt, SVELTE: Real-time intrusion detection in

the Internet of Things, Ad Hoc Netw. 11 (8) (2013) 2661–2674.
[44] M. N. Napiah, et al., Compression Header Analyzer Intrusion Detection

System (CHA - IDS) for 6LoWPAN Communication Protocol, IEEE Ac-
cess 6 (2018) 16623–16638.

[45] S. Kalamkar, A. Banerjee, A. Roychowdhury, Malicious user suppres-
sion for cooperative spectrum sensing in cognitive radio networks using
Dixon’s outlier detection method, in: 2012 National Conf. on Commun.
(NCC), IEEE, pp. 1–5.

[46] C. Efstathiou, Estimation of type I error probability from experimental
Dixon’s “Q” parameter on testing for outliers within small size data sets,
Talanta 69 (5) (2006) 1068–1071.

[47] B. Amidan, T. Ferryman, S. Cooley, Data outlier detection using the
Chebyshev theorem, in: 2005 IEEE Aerospace Conf., pp. 3814–3819.

[48] D. Fogel, An introduction to simulated evolutionary optimization, IEEE
Trans. Neural Netw. 5 (1) (1994) 3–14.

[49] A. Likas, N. Vlassis, J. Verbeek, The global k-means clustering algorithm,
Pattern Recognit. 36 (2) (2003) 451–461.

[50] M. Sharir, A strong-connectivity algorithm and its applications in data
flow analysis, Comput. Math. with Appl. 7 (1) (1981) 67–72.

[51] Cormen, Thomas and others, Introduction to Algorithms, The MIT Press,
2009.

[52] A. Marback, et al., A threat model-based approach to security testing,
Softw. Pract. Exper. J. 43 (2) (2013) 241–258.

[53] R. Gupta, et al., Machine learning models for secure data analytics: A
taxonomy and threat model, Comput. Commun. 153 (02 2020).

[54] S. Marano, V. Matta, L. Tong, Distributed detection in the presence of
Byzantine attacks, IEEE Trans. on Signal Process. 57 (1) (2008) 16–29.

[55] P. Nandhini, B. Mehtre, Directed acyclic graph inherited attacks and mit-
igation methods in RPL: a review, in: Int. Conf. on Sustain. Commun.
Netw. and Appl., Springer, 2019, pp. 242–252.

[56] B. Zarpelão, et al., A survey of intrusion detection in Internet of Things,
J. Netw. Comput. Appl. 84 (2017) 25–37.

[57] H. Bostani, M. Sheikhan, Hybrid of Anomaly-Based and Specification-
Based IDS for Internet of Things Using Unsupervised OPF Based on
MapReduce Approach, Comput. Commun. (2016) 52–71.

[58] H. Sedjelmaci, S. Senouci, T. Taleb, An accurate security game for low-
resource IoT devices, IEEE Trans. Veh. Technol. 66 (10) (2017) 9381–
9393.

[59] J. Kaur, An Ultimate Approach of Mitigating Attacks in RPL Based Low
Power Lossy Networks, Proc. of 17th Int. Conf. on Secur. and Manage.
(SAM) (2019).

[60] T. Wauters, et al., Federation of Internet experimentation facilities: archi-
tecture and implementation, in: European Conf. on Netw. and Commun.
(EuCNC) 2014, IEEE, pp. 1–5.

[61] M. Berman, et al., GENI: A federated testbed for innovative network ex-
periments, Comput. Netw. 61 (2014) 5–23.

[62] P. Valsamas, et al., Multi-PoP Network Slice Deployment: A Feasibility
Study, in: 2019 IEEE 8th Int, Conf. on Cloud Netw. (CloudNet), pp. 1–6.

[63] P. D. Maciel, et al., A marketplace-based approach to cloud network slice
composition across multiple domains, in: 2019 IEEE Conf. on Netw.
Softw. (NetSoft), pp. 480–488.

[64] P. Valsamas, et al., A Multi-domain Experimentation Environment for 5G
Media Verticals, in: IEEE 2019 Conf. on Comput. Commun. Workshops,
pp. 461–466.

[65] Flux Research Group, The University of Utah, https://www.flux.

utah.edu/index (2020).
[66] S. Skaperas, L. Mamatas, A. Chorti, Real-time video content popularity

detection based on mean change point analysis, IEEE Access 7 (2019)
142246–142260.

[67] S. Skaperas, L. Mamatas, A. Chorti, Real-Time Algorithms for the De-
tection of Changes in the Variance of Video Content Popularity, IEEE
Access 8 (2020) 30445–30457.

[68] T. Theodorou, L. Mamatas, A Versatile Out-of-Band Software-Defined
networking solution for the Internet of Things, IEEE Access 8 (2020)
103710–103733.

[69] T. Theodorou, L. Mamatas, SD-MIoT: A Software-Defined Networking
Solution for Mobile Internet of Things, IEEE Internet Things J. (2020)
1–1.

18

https://github.com/graphstream
https://www.flux.utah.edu/index
https://www.flux.utah.edu/index

