Multi-Access Edge Computing for Efficient Content
Distribution and loT Services

Polychronis Valsamas, Sotiris Skaperas, George Violettas, Tryfon Theodorou,

Sophia Petridou, Dimitris Vardalis, Antonios Tsioukas, Lefteris Mamatas
Department of Applied Informatics, University of Macedonia, Greece

ABSTRACT

We demonstrate the Multi-Access Edge Computing for Con-
tent and Measurements (MECOM) platform which orches-
trates content distribution and IoT measurements’ collection
for improved mobile user experience. MECOM targets sys-
temically the latter by bringing together: (i) heterogeneous
lightweight clouds hosting content and IoT data near the end-
users; (ii) multi-homing capabilities in the mobile nodes that
select the best connectivity option for the service used, e.g.,
for low latency or high throughput; (iii) early content popu-
larity change detection that scales the content distribution;
and (iv) IoT routing protocol adjustments that reduce the
delays of measurements’ collection. Our proposal addresses
diverse service requirements in two relevant scenarios, i.e.,
for content distribution and IoT services.

1 INTRODUCTION

The emerging 5G Networks call for new network and cloud
paradigms that bring elasticity in the network environment
and enable high throughput or ultra-low latency services,
such as on content or IoT data distribution. Along these lines,
multiple research initiatives bring together networks and
clouds, including the Multi-Access Edge and Fog Computing.

Our goal is to integrate and optimize together mobile envi-
ronments with lightweight cloud resources (i.e., Unikernels
or containers), and investigate the novel associated problems.
For example, MECOM attempts to improve the communica-
tion of mobile users through orchestrating different network
edge aspects, including content or measurements provision-
ing, connectivity options, and involved network protocols.

In contrast to the relevant platforms [2] and [4], MECOM:
i) realizes intelligent and modular orchestration; ii) integrates
heterogeneous lightweight visualization and IoT technolo-
gies; iii) supports multi-homing capabilities and mobility
aspects; and iv) performs real experimentation.

More precisely, the proposed platform and demo inte-
grates: i) modular orchestration features, i.e., efficient virtual
machine (VM) placement, dynamic load balancing and multi-
homing connectivity control; ii) Unikernel-based lightweight
cloud technologies for the network edge, i.e., appropriate-
ness for mobile environments due to their small footprint
and rapid manipulation [2]; iii) novel content-popularity

' I W
‘f’l"d‘;‘”
|

DECISION DATA DATAFLOW PLACEMENT

S ENGINE ANALYZER CONTROLLER ENGINE OUTRUTVISUALIZER

VIRTUALIZATION HYP!
VIOBILE NODES LIGH

: — o e =
L - envioeRtm) snin ™ 4 G
: [. =

& E‘-ﬂ!! e —

Figure 1: The architecture of the MECOM platform

change point (CP) detection scaling the cloud resources; iv)
mobile clients based on the novel MONROE platform [1], i.e.,
residing at real moving buses; and v) content-distribution
and IoT functionalities through two corresponding scenarios.
In the following sections 2 and 3, we present the MECOM
platform and describe the demo, respectively.

2 THE MECOM PLATFORM

Fig. 1 illustrates a high-level overview of the MECOM ar-
chitecture. In a bottom-up approach, we highlight the fol-
lowing three layers: (i) the Physical Layer consisting of the
lightweight edge clouds, IoT devices that collect measure-
ments, and mobile clients with multi-homing capabilities;
(ii) the Virtualization Layer enabling lightweight cloud ca-
pabilities through VMs with “tiny” operating systems, such
as the Mirage OS and Rump Kernel Unikernel technologies.
A Resource Abstraction Sublayer (RAS) hides virtualization
heterogeneity and exports a uniform interface for VM con-
trol; and (iii) the Management and Orchestration Layer with
the following features: a Data analyzer which performs CP
detection to early “track” changes in the content evolution, a
Decision Engine which specifies either to deploy or remove
lightweight VMs accommodating content and IoT data near
the end-users, a Data Flow Controller that balances the traf-
fic load among active VMs, and a Placement Engine which
determines the optimal location of the VMs. The MECOM
dashboard passes the experimentation input through the
Node-RED tool and provides the corresponding results.
The implementation details of the MECOM platform can
be briefly summarized as follows: The VM orchestration tool
places/monitors/removes Unikernel-based Web servers, i.e.,

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

(a) (b)

o m — Change point adaptation
*® £ “or-.Without Change point adaptati
72X =
=3)
i £ w
= F =
2 =
& S
= Z w0
3 2 oy
10 c
5 S =
o O,

0 50 100 150 200 250 300 350 0 5 100 15 200 250 300 350

Time (min) Time (min)

Figure 2: a) On-line CP detection (vertical line), b)
equivalent web-client performance

. 600 T T T 300
nl ping 3 —+— Static —%* Py
ping Telia Dynamic —&— -~
L b
500 5 f 5 s
& |\ T
] \ 5 " _ . i
L 1| ol 200

Jortlies

L
150 200

Timén(nsec)
Figure 3: Multi-homing for mobile users

providing content and IoT data. Orchestration processes were
simulated as Node-RED nodes whose unified north interface
communicates with the hypervisor through the RAS, while
their south interface communicates via ansible scripts with
different Unikernel flavors. The Multi-homing mechanism is
deployed on real vehicles to improve the mobile broadband
(MBB) connectivity of mobile users, in terms of throughput
and delay, i.e., for the content distribution and IoT services
scenario, respectively. Finally, the DNS-based load-balance
tool keeps track and redirects the end-users’ Web requests
to particular content caches (i.e., hosted by Unikernels), in
a round-robin fashion. Further implementation details are
described in [5] and the demo video (https://bit.ly/2wZ;j37f).

3 DEMO DESCRIPTION

Our demo highlights the aforementioned MECOM platform’s
novel aspects in two relevant scenarios, namely for content
distribution and IoT services. A major contribution is the
real experimentation setup for both scenarios offered by the
integration of the MONROE testbed [1] (i.e., providing real
mobile nodes with multi-homing capabilities) with our SWN
testbed (i.e., implementing the heterogeneous lightweight
clouds and the real IoT network extension). The test-bed
facility collaborates with the Cooja emulator for the imple-
mentation of more complicated IoT setups.

The first scenario is on a novel elastic content distribution
network. A number of mini PCs host video content that may
become viral and cause resource exhaustion at the edge cloud.

P. Valsamas et al.

Outside, mobile clients on MONROE buses suffer from MBB
connection inefficiencies and delays due to the overloaded
cloud. MECOM handles both issues with its orchestration
mechanisms. The Multi-homing mechanism constantly mon-
itors the MBB connectivity in terms of delay and bandwidth
(e.g., by periodic “ping” and HTTP downloading) and allows
the mobile users to dynamically and transparently switch
among the available providers, i.e., selecting the best con-
nectivity option for the service used. The VM orchestrator
employs our novel CP detection which early detects signifi-
cant content-popularity changes. Notifications such as the
ones illustrated in Fig. 2a are provided to the Decision Engine,
which initiates the deployment of additional content-caches
in the form of Unikernels. In response, the Placement Engine
defines the location of VMs while the DNS-based load bal-
ancer assigns the users’ requests to different Unikernels. As
a result of this resource orchestration, the improvements in
users’ connection time are depicted in Fig. 2b.

In the second IoT services scenario, the mobile users are
accessing IoT measurements cached in Unikernels. We as-
sume that a medical doctor has to access up-to-date IoT vital
sings of his patients using his smartphone, hence, the ser-
vice requires ultra-low latency. The MECOM’s Multi-homing
mechanism achieves the highest downloading speed by dy-
namically switching between two Swedish mobile service
providers, namely “3” and “Telia”, as shown in Fig. 3.

Our results show that orchestrating network resources
with lightweight clouds brings advantages in mobile users’
experience. Next steps include implementing relevant net-
work slicing techniques using the NECOS architecture [3].

ACKNOWLEDGEMENTS

This work is partially supported by the H2020 NECOS (grant
agreement no. 777067) and the MONROE (grant agreement
no. 644399) projects.

REFERENCES

[1] O. Alay, A. Lutu, M. Pe6n-Quirds, and others. 2017. Experience: An
open platform for experimentation with commercial mobile broadband
networks. In Proc. of the 23rd Ann. Int. Conf. on Mobile Computing and
Networking. ACM, 70-78.

S. Kuenzer, A. Ivanov, and others. 2017. Unikernels Everywhere: The
Case for Elastic CDNSs. In Proc. of the 13th ACM SIGPLAN/SIGOPS Int.
Conf. on Virtual Execution Environments. ACM, 15-29.

E.D. Silva, M. Lemos, A. Medeiros, and others. 2018. NECOS Project:
Towards Lightweight Slicing of Cloud-Federated Infrastructures. In
Workshop on advances in slicing for softwarized infrastructures (S4SI)
IEEE NETSOFT.

G. Siracusano, R. Bifulco, M. Trevisan, and others. 2017. Re-designing
Dynamic Content Delivery in the Light of a Virtualized Infrastructure.
IEEE 7. on Selected Areas in Communications 35, 11 (2017), 2574-2585.
P. Valsamas, S. Skaperas, and L. Mamatas. 2018. Elastic Content Dis-
tribution Based on Unikernels and Change-Point Analysis. In Proc. of
the 24th European Wireless Conf.

[2

—

3

—_

[4

flaav)

[5

—

https://bit.ly/2wZj37f

MEC for Efficient Content Distribution and loT Services SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

4 DEMO REQUIREMENTS ¢ Additional facilities: Our demo requires 220 V power
Our demo requirements follow: connections for four (4) devices.
e Poster Size: A0 paper size in portrait mode (841 X

e Space needed: The table space provided by the orga-
nizers is enough to cover our needs.

o Setup time: We need approximately 30 min to setup
up our demo.

1189 mm).

	Abstract
	1 Introduction
	2 The MECOM Platform
	3 Demo Description
	References
	4 Demo Requirements

